Spaces:
Sleeping
Sleeping
import streamlit as st | |
import sparknlp | |
import os | |
import pandas as pd | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
from sparknlp.pretrained import PretrainedPipeline | |
# Page configuration | |
st.set_page_config( | |
layout="wide", | |
initial_sidebar_state="auto" | |
) | |
# CSS for styling | |
st.markdown(""" | |
<style> | |
.main-title { | |
font-size: 36px; | |
color: #4A90E2; | |
font-weight: bold; | |
text-align: center; | |
} | |
.section p, .section ul { | |
color: #666666; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def init_spark(): | |
return sparknlp.start() | |
def create_pipeline(model): | |
document_assembler = DocumentAssembler()\ | |
.setInputCol("text")\ | |
.setOutputCol("document") | |
sentence_detector = SentenceDetector() \ | |
.setInputCols(["document"]) \ | |
.setOutputCol("sentence") | |
tokenizer = Tokenizer() \ | |
.setInputCols(["sentence"]) \ | |
.setOutputCol("token") | |
word_embeddings = WordEmbeddingsModel()\ | |
.pretrained('urduvec_140M_300d', 'ur')\ | |
.setInputCols(["sentence",'token'])\ | |
.setOutputCol("word_embeddings") | |
sentence_embeddings = SentenceEmbeddings() \ | |
.setInputCols(["sentence", "word_embeddings"]) \ | |
.setOutputCol("sentence_embeddings") \ | |
.setPoolingStrategy("AVERAGE") | |
classifier = SentimentDLModel.pretrained('sentimentdl_urduvec_imdb', 'ur' )\ | |
.setInputCols(['sentence_embeddings'])\ | |
.setOutputCol('sentiment') | |
nlpPipeline = Pipeline( | |
stages=[ | |
document_assembler, | |
sentence_detector, | |
tokenizer, | |
word_embeddings, | |
sentence_embeddings, | |
classifier ]) | |
return nlpPipeline | |
def fit_data(pipeline, data): | |
empty_df = spark.createDataFrame([['']]).toDF('text') | |
pipeline_model = pipeline.fit(empty_df) | |
model = LightPipeline(pipeline_model) | |
results = model.fullAnnotate(data)[0] | |
return results['sentiment'][0].result | |
# Set up the page layout | |
st.markdown('<div class="main-title">State-of-the-Art Urdu Sentiment Detection with Spark NLP</div>', unsafe_allow_html=True) | |
# Sidebar content | |
model = st.sidebar.selectbox( | |
"Choose the pretrained model", | |
["sentimentdl_urduvec_imdb"], | |
help="For more info about the models visit: https://sparknlp.org/models" | |
) | |
# Reference notebook link in sidebar | |
link = """ | |
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/public/SENTIMENT_UR.ipynb"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> | |
</a> | |
""" | |
st.sidebar.markdown('Reference notebook:') | |
st.sidebar.markdown(link, unsafe_allow_html=True) | |
# Load examples | |
folder_path = f"inputs/{model}" | |
examples = [ | |
lines[1].strip() | |
for filename in os.listdir(folder_path) | |
if filename.endswith('.txt') | |
for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()] | |
if len(lines) >= 2 | |
] | |
selected_text = st.selectbox("Select a sample", examples) | |
custom_input = st.text_input("Try it for yourself!") | |
if custom_input: | |
selected_text = custom_input | |
elif selected_text: | |
selected_text = selected_text | |
st.subheader('Selected Text') | |
st.write(selected_text) | |
# Initialize Spark and create pipeline | |
spark = init_spark() | |
pipeline = create_pipeline(model) | |
output = fit_data(pipeline, selected_text) | |
# Display output sentence | |
if output.lower() in ['pos', 'positive']: | |
st.markdown("""<h3>This seems like a <span style="color: green">{}</span> text. <span style="font-size:35px;">😃</span></h3>""".format('positive'), unsafe_allow_html=True) | |
elif output.lower() in ['neg', 'negative']: | |
st.markdown("""<h3>This seems like a <span style="color: red">{}</span> text. <span style="font-size:35px;">😠</span?</h3>""".format('negative'), unsafe_allow_html=True) | |