File size: 8,476 Bytes
d6e48fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import streamlit as st

# Custom CSS for better styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .sub-title {

            font-size: 24px;

            color: #333333;

            margin-top: 20px;

        }

        .section {

            background-color: #f9f9f9;

            padding: 15px;

            border-radius: 10px;

            margin-top: 20px;

        }

        .section h2 {

            font-size: 22px;

            color: #4A90E2;

        }

        .section p, .section ul {

            color: #666666;

        }

        .link {

            color: #4A90E2;

            text-decoration: none;

        }

    </style>

""", unsafe_allow_html=True)

# Introduction
st.markdown('<div class="main-title">State-of-the-Art Text Summarization with Spark NLP</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <p>Welcome to the Spark NLP Demos App! In the rapidly evolving field of Natural Language Processing (NLP), the combination of powerful models and scalable frameworks is crucial. One such resource-intensive task is Text Summarization, which benefits immensely from the efficient implementation of machine learning models on distributed systems like Apache Spark.</p>

    <p>Spark NLP stands out as the leading choice for enterprises building NLP solutions. This open-source library, built in Scala with a Python wrapper, offers state-of-the-art machine learning models within an easy-to-use pipeline design compatible with Spark ML.</p>

</div>

""", unsafe_allow_html=True)

# About the T5 Model
st.markdown('<div class="sub-title">About the T5 Model</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>A standout model for text summarization is the Text-to-Text Transformer (T5), introduced by Google researchers in 2019. T5 achieves remarkable results by utilizing a unique design that allows it to perform multiple NLP tasks with simple prefixes. For text summarization, the input text is prefixed with "summarize:".</p>

    <p>In Spark NLP, the T5 model is available through the T5Transformer annotator. We'll show you how to use Spark NLP in Python to perform text summarization using the T5 model.</p>

</div>

""", unsafe_allow_html=True)

st.image('https://www.johnsnowlabs.com/wp-content/uploads/2023/09/img_blog_2.jpg', caption='Diagram of the T5 model, from the original paper', use_column_width='auto')

# How to Use the Model
st.markdown('<div class="sub-title">How to Use the T5 Model with Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>To use the T5Transformer annotator in Spark NLP to perform text summarization, we need to create a pipeline with two stages: the first transforms the input text into an annotation object, and the second stage contains the T5 model.</p>

</div>

""", unsafe_allow_html=True)

st.markdown('### Installation')
st.code('!pip install spark-nlp', language='python')

st.markdown('### Import Libraries and Start Spark Session')
st.code("""

import sparknlp

from sparknlp.base import DocumentAssembler, PipelineModel

from sparknlp.annotator import T5Transformer



# Start the Spark Session

spark = sparknlp.start()

""", language='python')

st.markdown("""

<div class="section">

    <p>Now we can define the pipeline to use the T5 model. We'll use the PipelineModel object since we are using the pretrained model and don’t need to train any stage of the pipeline.</p>

</div>

""", unsafe_allow_html=True)

st.markdown('### Define the Pipeline')
st.code("""

# Transforms raw texts into `document` annotation

document_assembler = (

    DocumentAssembler().setInputCol("text").setOutputCol("documents")

)

# The T5 model

t5 = (

    T5Transformer.pretrained("t5_small")

    .setTask("summarize:")

    .setInputCols(["documents"])

    .setMaxOutputLength(200)

    .setOutputCol("t5")

)

# Define the Spark pipeline

pipeline = PipelineModel(stages = [document_assembler, t5])

""", language='python')

st.markdown("""

<div class="section">

    <p>To use the model, create a Spark DataFrame containing the input data. In this example, we'll work with a single sentence, but the framework can handle multiple texts for simultaneous processing. The input column from the DocumentAssembler annotator requires a column named “text.”</p>

</div>

""", unsafe_allow_html=True)

st.markdown('### Create Example DataFrame')
st.code("""

example = \"""

Transfer learning, where a model is first pre-trained on a data-rich task 

before being fine-tuned on a downstream task, has emerged as a powerful 

technique in natural language processing (NLP). The effectiveness of transfer 

learning has given rise to a diversity of approaches, methodology, and 

practice. In this paper, we explore the landscape of transfer learning 

techniques for NLP by introducing a unified framework that converts all 

text-based language problems into a text-to-text format. 

Our systematic study compares pre-training objectives, architectures, 

unlabeled data sets, transfer approaches, and other factors on dozens of 

language understanding tasks. By combining the insights from our exploration

with scale and our new Colossal Clean Crawled Corpus, we achieve 

state-of-the-art results on many benchmarks covering summarization, 

question answering, text classification, and more. To facilitate future 

work on transfer learning for NLP, we release our data set, pre-trained 

models, and code.

\"""



spark_df = spark.createDataFrame([[example]])

""", language='python')

st.markdown('### Apply the Pipeline')
st.code("""

result = pipeline.transform(spark_df)

result.select("t5.result").show(truncate=False)

""", language='python')

st.markdown('<div class="sub-title">Output</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>The summarization output will look something like this:</p>

    <pre>transfer learning has emerged as a powerful technique in natural language processing (NLP) the effectiveness of transfer learning has given rise to a diversity of approaches, methodologies, and practice.</pre>

    <p>Note: We defined the maximum output length to 200. Depending on the length of the original text, this parameter should be adapted.</p>

</div>

""", unsafe_allow_html=True)

# Additional Resources and References
st.markdown('<div class="sub-title">Additional Resources and References</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/docs/en/transformers#t5transformer" target="_blank">T5Transformer documentation page</a></li>

        <li><a class="link" href="https://arxiv.org/abs/1910.10683" target="_blank">T5 paper</a></li>

        <li><a class="link" href="https://sparknlp.org/docs/en/quickstart" target="_blank">Getting Started with Spark NLP</a></li>

        <li><a class="link" href="https://nlp.johnsnowlabs.com/models" target="_blank">Pretrained Models</a></li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/annotation/text/english" target="_blank">Example Notebooks</a></li>

        <li><a class="link" href="https://sparknlp.org/docs/en/install" target="_blank">Installation Guide</a></li>

    </ul>

</div>

""", unsafe_allow_html=True)

st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>

        <li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>

        <li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>

        <li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>

    </ul>

</div>

""", unsafe_allow_html=True)