import streamlit as st # Page configuration st.set_page_config( layout="wide", initial_sidebar_state="auto" ) # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) # Title st.markdown('
Introduction to XLM-RoBERTa Annotators in Spark NLP
', unsafe_allow_html=True) # Subtitle st.markdown("""

XLM-RoBERTa (Cross-lingual Robustly Optimized BERT Approach) is an advanced multilingual model that extends the capabilities of RoBERTa to over 100 languages. Pre-trained on a massive, diverse corpus, XLM-RoBERTa is designed to handle various NLP tasks in a multilingual context, making it ideal for applications that require cross-lingual understanding. Below, we provide an overview of the XLM-RoBERTa annotators for these tasks:

""", unsafe_allow_html=True) st.markdown('
XLM-RoBERTa for Token Classification', unsafe_allow_html=True) st.markdown("""

Token Classification is a crucial NLP task that involves assigning labels to individual tokens (words or subwords) within a sentence. This task is fundamental for applications like Named Entity Recognition (NER), Part-of-Speech (POS) tagging, and other fine-grained text analyses.

XLM-RoBERTa, with its multilingual capabilities, is particularly suited for token classification in diverse linguistic contexts. Leveraging this model in Spark NLP allows for robust and scalable token classification across multiple languages, making it an invaluable tool for multilingual NLP projects.

Using XLM-RoBERTa for token classification enables:

Advantages of using XLM-RoBERTa for token classification in Spark NLP include:

""", unsafe_allow_html=True) # General Information about Using Token Classification Models st.markdown('
How to Use XLM-RoBERTa for Token Classification in Spark NLP
', unsafe_allow_html=True) st.markdown("""

To harness XLM-RoBERTa for token classification, Spark NLP provides a straightforward pipeline setup. Below is a sample implementation that demonstrates how to use XLM-RoBERTa for Named Entity Recognition (NER). The model's multilingual capabilities ensure that it can be applied effectively across different languages, making it ideal for diverse NLP tasks.

""", unsafe_allow_html=True) st.code(''' from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline from pyspark.sql.functions import col, expr documentAssembler = DocumentAssembler() \\ .setInputCol("text") \\ .setOutputCol("document") tokenizer = Tokenizer() \\ .setInputCols(["document"]) \\ .setOutputCol("token") # Example of loading a token classification model (e.g., XLM-RoBERTa) token_classifier = XlmRoBertaForTokenClassification.pretrained("xlmroberta_ner_large_finetuned_conll03_english", "xx") \\ .setInputCols(["document", "token"]) \\ .setOutputCol("ner") ner_converter = NerConverter() \\ .setInputCols(['document', 'token', 'ner']) \\ .setOutputCol('ner_chunk') pipeline = Pipeline(stages=[ documentAssembler, tokenizer, token_classifier, ner_converter ]) data = spark.createDataFrame([["Spark NLP provides powerful tools for multilingual NLP."]]).toDF("text") result = pipeline.fit(data).transform(data) result.selectExpr("explode(ner_chunk) as ner_chunk").select( col("ner_chunk.result").alias("chunk"), col("ner_chunk.metadata.entity").alias("ner_label") ).show(truncate=False) ''', language='python') # Results Example st.text(""" +--------------------------+---------+ |chunk |ner_label| +--------------------------+---------+ |Spark NLP |ORG | +--------------------------+---------+ """) # Model Info Section st.markdown('
Choosing the Right XLM-RoBERTa Model
', unsafe_allow_html=True) st.markdown("""

Spark NLP provides access to various pre-trained XLM-RoBERTa models tailored for token classification tasks. Selecting the appropriate model can significantly impact performance, particularly in multilingual contexts.

To explore and choose the most suitable XLM-RoBERTa model for your needs, visit the Spark NLP Models Hub. Here, you will find detailed descriptions of each model, including their specific applications and supported languages.

""", unsafe_allow_html=True) st.markdown('
References
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True) # Footer st.markdown("""
""", unsafe_allow_html=True) st.markdown('
Quick Links
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True)