File size: 3,717 Bytes
d093436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import streamlit as st
import sparknlp
import os
import pandas as pd

from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline

# Page configuration
st.set_page_config(
    layout="wide", 
    page_title="Spark NLP Demos App", 
    initial_sidebar_state="auto"
)

# CSS for styling
st.markdown("""
    <style>
        .main-title {
            font-size: 36px;
            color: #4A90E2;
            font-weight: bold;
            text-align: center;
        }
        .section p, .section ul {
            color: #666666;
        }
    </style>
""", unsafe_allow_html=True)

@st.cache_resource
def init_spark():
    return sparknlp.start()

@st.cache_resource
def create_pipeline(model):
    documentAssembler = DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")
        
    use = UniversalSentenceEncoder.pretrained("tfhub_use", "en")\
    .setInputCols(["document"])\
    .setOutputCol("sentence_embeddings")


    sentimentdl = SentimentDLModel.pretrained(model, "en")\
        .setInputCols(["sentence_embeddings"])\
        .setOutputCol("sentiment")

    nlpPipeline = Pipeline(stages=[documentAssembler, use, sentimentdl])

    return nlpPipeline

def fit_data(pipeline, data):
    empty_df = spark.createDataFrame([['']]).toDF('text')
    pipeline_model = pipeline.fit(empty_df)
    model = LightPipeline(pipeline_model)
    results = model.fullAnnotate(data)[0]

    return results['sentiment'][0].result

# Set up the page layout
st.markdown('<div class="main-title">State-of-the-Art Sentiment Detection with Spark NLP</div>', unsafe_allow_html=True)

# Sidebar content
model = st.sidebar.selectbox(
    "Choose the pretrained model",
    ["sentimentdl_use_imdb", "sentimentdl_use_twitter"],
    help="For more info about the models visit: https://sparknlp.org/models"
)

# Reference notebook link in sidebar
link = """
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/SENTIMENT_EN.ipynb">
    <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)

# Load examples
folder_path = f"inputs/{model}"
examples = [
    lines[1].strip() 
    for filename in os.listdir(folder_path) 
    if filename.endswith('.txt') 
    for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()] 
    if len(lines) >= 2
]

selected_text = None
result_type = 'tweet'
if 'imdb' in model.lower() or 't5' in model.lower():
  selected_text = st.selectbox("Select a sample IMDB review", examples)
  result_type = 'review'
else:
  selected_text = st.selectbox("Select a sample Tweet", examples)

custom_input = st.text_input("Try it for yourself!")

if custom_input:
    selected_text = custom_input
elif selected_text:
    selected_text = selected_text

st.write('Selected Text')
st.write(selected_text)

# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)

# Display output sentence
if output in ['pos', 'positive', 'POSITIVE']:
  st.markdown("""<h3>This seems like a <span style="color: green">{}</span> {}. <span style="font-size:35px;">&#128515;</span></h3>""".format('positive', result_type), unsafe_allow_html=True)
elif output in ['neg', 'negative', 'NEGATIVE']:
  st.markdown("""<h3>This seems like a <span style="color: red">{}</span> {}. <span style="font-size:35px;">&#128544;</span?</h3>""".format('negative', result_type), unsafe_allow_html=True)