Spaces:
Sleeping
Sleeping
File size: 15,185 Bytes
3c504d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import streamlit as st
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #333333;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
</style>
""", unsafe_allow_html=True)
# Introduction
st.markdown('<div class="main-title">Text Preprocessing with Spark NLP</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Welcome to the Spark NLP Text Preprocessing Demo App! In the field of Natural Language Processing (NLP), preprocessing is a crucial step that ensures the text data is clean and suitable for modeling. Effective preprocessing can significantly enhance the performance of NLP models.</p>
<p>Spark NLP stands out as a leading library for text preprocessing, offering a range of tools and models within an easy-to-use pipeline design compatible with Apache Spark. This demo showcases how you can leverage Spark NLP to preprocess your text data efficiently.</p>
</div>
""", unsafe_allow_html=True)
# About Text Preprocessing
st.markdown('<div class="sub-title">About Text Preprocessing</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Text preprocessing involves a series of steps to clean and normalize text data. Common tasks include tokenization, stopword removal, stemming, lemmatization, and more. These steps are essential for preparing raw text for downstream NLP tasks.</p>
<p>In Spark NLP, text preprocessing is facilitated through various annotators that can be combined into a preprocessing pipeline. We'll demonstrate how to use these annotators in Python to preprocess text data effectively.</p>
</div>
""", unsafe_allow_html=True)
st.image('https://www.johnsnowlabs.com/wp-content/uploads/2023/05/img_blog_2-4.jpg', caption='Text preprocessing pipeline visual', use_column_width='auto')
# How to Use the Preprocessing Tools
st.markdown('<div class="sub-title">How to Use Spark NLP for Text Preprocessing</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>To preprocess text using Spark NLP, we need to create a pipeline that includes various preprocessing annotators. These annotators transform the input text through steps like tokenization, normalization, and stopword removal.</p>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="sub-title">Installation</div>', unsafe_allow_html=True)
st.code('!pip install spark-nlp', language='python')
# Import Libraries and Read Data
st.markdown('<div class="sub-title">Importing Libraries and Reading Data</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>First, we'll import Spark NLP and necessary libraries, read the data from a local file, and convert it into a Spark DataFrame.</p>
</div>
""", unsafe_allow_html=True)
st.code("""
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
spark= sparknlp.start()
df= spark.read\\
.option("header", True)\\
.csv("spam_text_messages.csv")\\
.toDF("category", "text")
df.show(5, truncate=30)
>>>
+--------+------------------------------+
|category| text|
+--------+------------------------------+
| ham|Go until jurong point, craz...|
| ham| Ok lar... Joking wif u oni...|
| spam|Free entry in 2 a wkly comp...|
| ham|U dun say so early hor... U...|
| ham|Nah I don't think he goes t...|
+--------+------------------------------+
only showing top 5 rows
""", language='python')
st.markdown("""
<div class="section">
<p>The dataset contains two columns: <strong>category</strong> and <strong>text</strong>. The text column contains messages, and the category column indicates whether the message is spam or not (ham).</p>
</div>
""", unsafe_allow_html=True)
# Document Assembler
st.markdown('<div class="sub-title">Document Assembler</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The DocumentAssembler is the beginning part of any Spark NLP project. It creates the first annotation of type Document, which may be used by annotators down the road. We use it as follows:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
documentAssembler = DocumentAssembler() \\
.setInputCol("text") \\
.setOutputCol("document") \\
.setCleanupMode("shrink")
df_doc = documentAssembler.transform(df)
df_doc.printSchema()
""", language='python')
st.markdown("""
<div class="section">
<p>The <code>shrink</code> cleanup mode removes new lines and tabs, merging multiple spaces and blank lines into a single space. The schema after transformation includes the new <strong>document</strong> column.</p>
</div>
""", unsafe_allow_html=True)
# Tokenizer
st.markdown('<div class="sub-title">Tokenizer</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The Tokenizer identifies the tokens in Spark NLP:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
tokenizer = Tokenizer() \\
.setInputCols(["document"]) \\
.setOutputCol("token")
""", language='python')
# Sentence Detector
st.markdown('<div class="sub-title">Sentence Detector</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The SentenceDetector finds sentence boundaries in raw text:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
sentenceDetector = SentenceDetector() \\
.setInputCols(["document"]) \\
.setOutputCol("sentence")
""", language='python')
# Normalizer
st.markdown('<div class="sub-title">Normalizer</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The Normalizer cleans dirty characters after regex pattern and removes words based on a given dictionary:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
normalizer = Normalizer() \\
.setInputCols(["token"]) \\
.setOutputCol("normalized") \\
.setLowercase(True) \\
.setCleanupPatterns(["[^\w\d\s]"])
""", language='python')
# Stopwords Cleaner
st.markdown('<div class="sub-title">Stopwords Cleaner</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The StopWordsCleaner removes stopwords from the text:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
stopwordsCleaner = StopWordsCleaner() \\
.setInputCols(["token"]) \\
.setOutputCol("cleaned_tokens") \\
.setCaseSensitive(True)
""", language='python')
# Token Assembler
st.markdown('<div class="sub-title">Token Assembler</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The TokenAssembler assembles cleaned tokens back together:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
tokenAssembler = TokenAssembler() \\
.setInputCols(["sentence", "cleaned_tokens"]) \\
.setOutputCol("assembled")
""", language='python')
# Stemmer
st.markdown('<div class="sub-title">Stemmer</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The Stemmer reduces inflectional forms and sometimes derivationally related forms of a word to a common base form:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
stemmer = Stemmer() \\
.setInputCols(["token"]) \\
.setOutputCol("stem")
""", language='python')
# Lemmatizer
st.markdown('<div class="sub-title">Lemmatizer</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The Lemmatizer reduces words to their base or root form, referring to a dictionary to understand the word's meaning:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
lemmatizer = Lemmatizer() \\
.setInputCols(["token"]) \\
.setOutputCol("lemma") \\
.setDictionary("AntBNC_lemmas_ver_001.txt", value_delimiter="\\t", key_delimiter="->")
""", language='python')
# Pipeline
st.markdown('<div class="sub-title">Putting All Processes into a Spark ML Pipeline</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Now, we will put all the preprocessing stages into a Spark ML Pipeline and apply it to our dataset.</p>
</div>
""", unsafe_allow_html=True)
st.code("""
from pyspark.ml import Pipeline
nlpPipeline = Pipeline(stages=[
documentAssembler,
tokenizer,
sentenceDetector,
normalizer,
stopwordsCleaner,
tokenAssembler,
stemmer,
lemmatizer
])
empty_df = spark.createDataFrame([[""]]).toDF("text")
model = nlpPipeline.fit(empty_df)
result = model.transform(df)
""", language='python')
# Showcase/Example
st.markdown('<div class="sub-title">Showcase/Example</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>Let's examine the results of our preprocessing pipeline, starting with tokens and normalized tokens:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
from pyspark.sql import functions as F
result.select("token.result", "normalized.result").show(5, truncate=30)
>>>
+------------------------------+------------------------------+
| result| result|
+------------------------------+------------------------------+
|[Go, until, jurong, point, ...|[go, until, jurong, point, ...|
|[Ok, lar, ..., Joking, wif,...|[ok, lar, joking, wif, u, oni]|
|[Free, entry, in, 2, a, wkl...|[free, entry, in, 2, a, wkl...|
|[U, dun, say, so, early, ho...|[u, dun, say, so, early, ho...|
|[Nah, I, don't, think, he, ...|[nah, ı, dont, think, he, g...|
+------------------------------+------------------------------+
only showing top 5 rows
""", language='python')
st.markdown("""
<div class="section">
<p>Next, we check the cleaned data from stopwords:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
result.select(F.explode(F.arrays_zip("token.result", "cleaned_tokens.result")).alias("col")) \\
.select(F.expr("col['0']").alias("token"), F.expr("col['1']").alias("cleaned_sw")).show(10)
>>>
+------------------------------+------------------------------+
| result| result|
+------------------------------+------------------------------+
|[Go, until, jurong, point, ...|[go, until, jurong, point, ...|
|[Ok, lar, ..., Joking, wif,...|[ok, lar, joking, wif, u, oni]|
|[Free, entry, in, 2, a, wkl...|[free, entry, in, 2, a, wkl...|
|[U, dun, say, so, early, ho...|[u, dun, say, so, early, ho...|
|[Nah, I, don't, think, he, ...|[nah, ı, dont, think, he, g...|
+------------------------------+------------------------------+
only showing top 5 rows
""", language='python')
st.markdown("""
<div class="section">
<p>Finally, we compare the sentence detector result and token assembler result:</p>
</div>
""", unsafe_allow_html=True)
st.code("""
result.select(F.explode(F.arrays_zip("sentence.result", "assembled.result")).alias("col")) \\
.select(F.expr("col['0']").alias("sentence"), F.expr("col['1']").alias("assembled")).show(5, truncate=30)
>>>
+------------------------------+------------------------------+
| sentence| assembled|
+------------------------------+------------------------------+
| Go until jurong point, crazy.| Go jurong point, crazy|
| .| |
|Available only in bugis n g...|Available bugis n great wor...|
| Cine there got amore wat.| Cine got amore wat|
| .| |
+------------------------------+------------------------------+
only showing top 5 rows
result.withColumn("tmp", F.explode("assembled")) \\
.select("tmp.*").select("begin", "end", "result", "metadata.sentence").show(5, truncate=30)
>>>
+-----+---+------------------------------+--------+
|begin|end| result|sentence|
+-----+---+------------------------------+--------+
| 0| 21| Go jurong point, crazy| 0|
| 29| 28| | 1|
| 31| 74|Available bugis n great wor...| 2|
| 84|101| Cine got amore wat| 3|
| 109|108| | 4|
+-----+---+------------------------------+--------+
only showing top 5 rows
""", language='python')
st.markdown("""
<div class="section">
<p>In this example, we have successfully cleaned and preprocessed text data using various annotators and transformers in Spark NLP. This preprocessing pipeline is essential for preparing the data for further NLP tasks, ensuring that the text is clean and normalized.</p>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="sub-title">Additional Resources and References</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/1hr_workshop/SparkNLP_openSource_workshop_1hr.ipynb" target="_blank">Intro to Spark NLP workflow</a></li>
<li><a class="link" href="https://sparknlp.org/docs/en/quickstart" target="_blank">Getting Started with Spark NLP</a></li>
<li><a class="link" href="https://nlp.johnsnowlabs.com/models" target="_blank">Pretrained Models</a></li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/annotation/text/english" target="_blank">Example Notebooks</a></li>
<li><a class="link" href="https://sparknlp.org/docs/en/install" target="_blank">Installation Guide</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
</ul>
</div>
""", unsafe_allow_html=True) |