import gradio as gr import fastai import skimage from fastai.vision.all import * learn=load_learner('model.pkl') categories=('negative','positive') def classify(text): pred,idx,probs=learn.predict(text) return dict(zip(categories, map(float,probs))) examples=['This was a very though provoking movie and very well written'] title = "Text sentiment classifier" description = "This model classifies a sentence of text as having a positive or negative setiment" text = gr.Textbox() label= gr.Label() intf=gr.Interface(fn=classify,inputs=text,outputs=label,title=title, description=description, examples=examples) intf.launch(inline=False)