import gradio as gr import fastai import skimage import timm from fastai.vision.all import * learn=load_learner('model.pkl') categories=('not psilocybe','psilocybe') def classify(img): pred,idx,probs=learn.predict(img) return dict(zip(categories, map(float,probs))) title = "Psilocybe classifier" description = "Please do not consume unknown mushrooms based on this app. With a more accurate model this could complement a harm minimization approach." image = gr.Image() label= gr.Label() examples=['psilocybe.jpg'] intf=gr.Interface(fn=classify,inputs=image,outputs=label,title=title, description=description, examples=examples) intf.launch(inline=False)