import os | |
from huggingface_hub import HfApi | |
# clone / pull the lmeh eval data | |
H4_TOKEN = os.environ.get("H4_TOKEN", None) | |
# REPO_ID = "pminervini/sparse-generative-ai" | |
REPO_ID = "sparse-generative-ai/open-moe-llm-leaderboard" | |
QUEUE_REPO = "sparse-generative-ai/requests" | |
QUEUE_REPO_OPEN_LLM = "open-llm-leaderboard/requests" | |
RESULTS_REPO = "sparse-generative-ai/results" | |
DEBUG_QUEUE_REPO = "sparse-generative-ai/debug_requests" | |
DEBUG_RESULTS_REPO = "sparse-generative-ai/debug_results" | |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) | |
CACHE_PATH = os.getenv("HF_HOME", ".") | |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") | |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") | |
EVAL_REQUESTS_PATH_OPEN_LLM = os.path.join(CACHE_PATH, "eval-queue-open-llm") | |
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" | |
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" | |
PATH_TO_COLLECTION = "sparse-generative-ai/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03" | |
# Rate limit variables | |
RATE_LIMIT_PERIOD = 7 | |
RATE_LIMIT_QUOTA = 5 | |
HAS_HIGHER_RATE_LIMIT = ["TheBloke"] | |
API = HfApi(token=H4_TOKEN) | |