zhiminy's picture
ollama prototype
dcdc2bc
raw
history blame
2.15 kB
from typing import List, Tuple
import torch
import ollama
from lm_eval.api.registry import register_model
from src.backend.hflm_with_measurement import HFLMWithMeasurement
@register_model("ollama")
class OllamaChatTemplate(HFLMWithMeasurement):
def __init__(self, use_chat_template=True, **kwargs):
super().__init__(**kwargs)
self.use_chat_template = use_chat_template
# Initialize the ollama model and tokenizer here
self.model = ollama.OllamaModel.from_pretrained(kwargs['model_name_or_path'])
self.tokenizer = ollama.OllamaTokenizer.from_pretrained(kwargs['model_name_or_path'])
def tok_batch_encode(
self,
strings: List[str],
padding_side: str = "left",
left_truncate_len: int = None,
truncation: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.use_chat_template:
try:
updated_strings = []
for input_string in strings:
messages = [
{"role": "user", "content": f"{input_string}"},
]
updated_string = self.tokenizer.apply_chat_template(messages, tokenize=False)
updated_strings.append(updated_string)
strings = updated_strings[:]
except Exception as e:
print(f"Failed to update input string with chat template: {e}")
# Encode a batch of strings. Converts to tensors and pads automatically.
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
encoding = self.tokenizer(
strings,
truncation=truncation,
padding="longest",
return_tensors="pt",
add_special_tokens=True,
)
if left_truncate_len:
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
encoding["attention_mask"] = encoding["attention_mask"][:, -left_truncate_len:]
self.tokenizer.padding_side = old_padding_side
return encoding["input_ids"], encoding["attention_mask"]