Photo_edit / modules /masking_module.py
spdraptor's picture
Update modules/masking_module.py
18cec49 verified
#Script added by SPDraptor
import spaces
import copy
import numpy as np
import torch
from PIL import Image, ImageDraw
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from typing import Any
import supervision as sv
from sam2.build_sam import build_sam2, build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
import time
device = torch.device('cuda')
model_id = 'microsoft/Florence-2-large'
models_dict = {
'Florence_model':AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval(),
'Florence_processor':AutoProcessor.from_pretrained(model_id, trust_remote_code=True),
}
SAM_CHECKPOINT = "/home/user/app/sam2_hiera_large.pt"
SAM_CONFIG = "sam2_hiera_l.yaml"
@spaces.GPU(duration=20)
def load_sam_image_model(
device: torch.device,
config: str = SAM_CONFIG,
checkpoint: str = SAM_CHECKPOINT
) -> SAM2ImagePredictor:
model = build_sam2(config, checkpoint)
return SAM2ImagePredictor(sam_model=model)
@spaces.GPU(duration=20)
def run_sam_inference(
model: Any,
image: Image,
detections: sv.Detections
) -> sv.Detections:
image = np.array(image.convert("RGB"))
model.set_image(image)
print(type(detections.xyxy),detections.xyxy)
if detections.xyxy.size == 0:
return {
'code': 400,
'data':'null',
'message':'The AI couldn’t detect the object you want to mask.'
}
mask, score, _ = model.predict(box=detections.xyxy, multimask_output=False)
# dirty fix; remove this later
if len(mask.shape) == 4:
mask = np.squeeze(mask)
detections.mask = mask.astype(bool)
return {
'code': 200,
'data':detections,
'message':'The AI couldn’t detect the object you want to mask.'
}
@spaces.GPU(duration=20)
def florence2(image,task_prompt, text_input=None):
"""
Calling the Microsoft Florence2 model
"""
model = models_dict['Florence_model']
processor = models_dict['Florence_processor']
# print(image)
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
input_florence = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
print(input_florence)
generated_ids = model.generate(
input_ids=input_florence["input_ids"],
pixel_values=input_florence["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids,
skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height))
return parsed_answer
def draw_MASK(image, prediction, fill_mask=False):
"""
Draws segmentation masks with polygons on an image.
Parameters:
- image_path: Path to the image file.
- prediction: Dictionary containing 'polygons' and 'labels' keys.
'polygons' is a list of lists, each containing vertices of a polygon.
'labels' is a list of labels corresponding to each polygon.
- fill_mask: Boolean indicating whether to fill the polygons with color.
"""
width=image.width
height=image.height
new_image = Image.new("RGB", (width, height), color="black")
draw = ImageDraw.Draw(new_image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = "white"
fill_color = "white" if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if fill_mask:
draw.polygon(_polygon, outline=color, fill=fill_color)
else:
draw.polygon(_polygon, outline=color)
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
return new_image
@spaces.GPU(duration=20)
def masking_process(image,obj):
# task_prompt = '<REGION_TO_SEGMENTATION>'
# # task_prompt = '<OPEN_VOCABULARY_DETECTION>'
# print(type(task_prompt),type(obj))
# print('1')
start_time = time.time()
image = Image.fromarray(image).convert("RGB")
# results = florence2(image,task_prompt, text_input=obj)
# output_image = copy.deepcopy(image)
# img=draw_MASK(output_image,
# results['<REGION_TO_SEGMENTATION>'],
# fill_mask=True)
# mask=img.convert('1')
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
# image = Image.open("/content/tiger.jpeg").convert("RGB")
# obj = "Tiger"
Florence_results = florence2(image,task_prompt, text_input=obj)
# print('2')
SAM_IMAGE_MODEL = load_sam_image_model(device=device)
# print('3')
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=Florence_results,
resolution_wh=image.size
)
# print('4')
response = run_sam_inference(SAM_IMAGE_MODEL, image, detections)
print(f'Time taken by masking model: {time.time() - start_time}')
# print('5')
if response['code'] == 400:
print("no object found")
return "no object found"
else:
detections2=response['data']
mask = Image.fromarray(detections2.mask[0])
# response['data']=mask
torch.cuda.empty_cache()
return mask