File size: 4,502 Bytes
456ed62
 
 
 
 
a17cbc4
 
ef6be9c
 
db22c6f
456ed62
 
 
 
 
4c9245b
 
b725215
4c9245b
b725215
4c9245b
ef6be9c
 
 
 
 
 
 
 
4c9245b
456ed62
1083d96
456ed62
b725215
 
 
456ed62
b725215
a17cbc4
 
 
b725215
4c9245b
 
 
456ed62
 
 
b725215
 
456ed62
b725215
456ed62
 
 
 
 
 
 
b725215
456ed62
 
b725215
456ed62
 
 
 
 
 
 
 
 
 
 
b725215
456ed62
 
 
b725215
456ed62
 
 
b725215
00aa3d6
db22c6f
79edfd3
 
b725215
db22c6f
79edfd3
 
ef6be9c
db22c6f
 
456ed62
ef6be9c
79edfd3
db22c6f
 
79edfd3
 
 
 
 
db22c6f
79edfd3
456ed62
30a9e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69526f
0f72ff6
 
 
 
df1e71b
 
30a9e85
395f2dc
 
d2b1aff
456ed62
4c9245b
 
 
456ed62
20740b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
import shutil
import gzip
import io

# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond

# Load the model outside of the GPU-decorated function
def load_model():
    print("Loading model...")
    model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
    print("Model loaded successfully.")
    return model, model_config
    
def compress_file(file_path):
    compressed_file_path = file_path + '.gz'
    with open(file_path, 'rb') as f_in:
        with gzip.open(compressed_file_path, 'wb') as f_out:
            shutil.copyfileobj(f_in, f_out)
    return compressed_file_path


# Function to set up, generate, and process the audio
@spaces.GPU(duration=25)  # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
    print(f"Prompt received: {prompt}")
    print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")

    # Fetch the Hugging Face token from the environment variable
    hf_token = os.getenv('HF_TOKEN')
    print(f"Hugging Face token: {hf_token}")

    # Use pre-loaded model and configuration
    model, model_config = load_model()
    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")

    model = model.to(device)
    print("Model moved to device.")

    # Set up text and timing conditioning
    conditioning = [{
        "prompt": prompt,
        "seconds_start": 0,
        "seconds_total": seconds_total
    }]
    print(f"Conditioning: {conditioning}")

    # Generate stereo audio
    print("Generating audio...")
    output = generate_diffusion_cond(
        model,
        steps=steps,
        cfg_scale=cfg_scale,
        conditioning=conditioning,
        sample_size=sample_size,
        sigma_min=0.3,
        sigma_max=500,
        sampler_type="dpmpp-3m-sde",
        device=device
    )
    print("Audio generated.")

    # Rearrange audio batch to a single sequence
    output = rearrange(output, "b d n -> d (b n)")
    print("Audio rearranged.")

    # Peak normalize, clip, convert to int16
    output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    print("Audio normalized and converted.")

    # # Generate a unique filename for the output
    unique_filename = f"output_{uuid.uuid4().hex}.wav"
    print(f"Saving audio to file: {unique_filename}")

    # # Save to file
    torchaudio.save(unique_filename, output, sample_rate)
    print(f"Audio saved: {unique_filename}")
    
    # compressed_filename = compress_file(unique_filename)
    # return compressed_filename

    # # Return the path to the generated audio file
    return unique_filename
    
    # Convert audio tensor to bytes
    # byte_io = io.BytesIO()
    # torchaudio.save(byte_io, output, sample_rate, format="wav")
    # byte_io.seek(0)
    # audio_bytes = byte_io.read()
    # print("Audio converted to bytes.")

    # return audio_bytes


DESCRIPTION = "Welcome to Raptor APIs"


css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Tab(label="GenAudio"):
        with gr.Row():
            with gr.Column():
                    prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
                    duration = gr.Slider(0, 47, value=30, label="Duration in Seconds")
                    steps = gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps")
                    cfg = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
                    btn = gr.Button(value="generate")
                    
            with gr.Column():
                output = gr.Audio(label="audio")
                # output_byte_code = gr.Textbox(label="Byte Code Output")
                btn.click(generate_audio,inputs=[prompt,duration, steps, cfg],outputs=output,api_name="genAudio")

# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()

# Launch the Interface
demo.launch()