Spaces:
Runtime error
Runtime error
File size: 4,502 Bytes
456ed62 a17cbc4 ef6be9c db22c6f 456ed62 4c9245b b725215 4c9245b b725215 4c9245b ef6be9c 4c9245b 456ed62 1083d96 456ed62 b725215 456ed62 b725215 a17cbc4 b725215 4c9245b 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 456ed62 b725215 00aa3d6 db22c6f 79edfd3 b725215 db22c6f 79edfd3 ef6be9c db22c6f 456ed62 ef6be9c 79edfd3 db22c6f 79edfd3 db22c6f 79edfd3 456ed62 30a9e85 a69526f 0f72ff6 df1e71b 30a9e85 395f2dc d2b1aff 456ed62 4c9245b 456ed62 20740b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
import shutil
import gzip
import io
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
print("Loading model...")
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Model loaded successfully.")
return model, model_config
def compress_file(file_path):
compressed_file_path = file_path + '.gz'
with open(file_path, 'rb') as f_in:
with gzip.open(compressed_file_path, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
return compressed_file_path
# Function to set up, generate, and process the audio
@spaces.GPU(duration=25) # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("Audio normalized and converted.")
# # Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# # Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# compressed_filename = compress_file(unique_filename)
# return compressed_filename
# # Return the path to the generated audio file
return unique_filename
# Convert audio tensor to bytes
# byte_io = io.BytesIO()
# torchaudio.save(byte_io, output, sample_rate, format="wav")
# byte_io.seek(0)
# audio_bytes = byte_io.read()
# print("Audio converted to bytes.")
# return audio_bytes
DESCRIPTION = "Welcome to Raptor APIs"
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="GenAudio"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
duration = gr.Slider(0, 47, value=30, label="Duration in Seconds")
steps = gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps")
cfg = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
btn = gr.Button(value="generate")
with gr.Column():
output = gr.Audio(label="audio")
# output_byte_code = gr.Textbox(label="Byte Code Output")
btn.click(generate_audio,inputs=[prompt,duration, steps, cfg],outputs=output,api_name="genAudio")
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Launch the Interface
demo.launch()
|