Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,101 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
)
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
-
|
140 |
-
run_button.click(
|
141 |
-
fn = infer,
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
144 |
-
)
|
145 |
|
146 |
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageColor
|
3 |
+
from back_task import *
|
4 |
+
|
5 |
+
# The function that does the hard work
|
6 |
+
def generate(radio,color,prompt, guidance_loss_scale):
|
7 |
+
print(color)
|
8 |
+
if radio == "color guidance":
|
9 |
+
target_color = ImageColor.getcolor(color, "RGB") # Target color as RGB
|
10 |
+
target_color = [a / 255 for a in target_color] # Rescale from (0, 255) to (0, 1)
|
11 |
+
|
12 |
+
elif radio == "text guidance":
|
13 |
+
# We embed a prompt with CLIP as our target
|
14 |
+
text = open_clip.tokenize([prompt]).to(device)
|
15 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
16 |
+
text_features = clip_model.encode_text(text)
|
17 |
+
|
18 |
+
x = torch.randn(1, 3, 256, 256).to(device)
|
19 |
+
for i, t in tqdm(enumerate(scheduler.timesteps)):
|
20 |
+
model_input = scheduler.scale_model_input(x, t)
|
21 |
+
with torch.no_grad():
|
22 |
+
noise_pred = image_pipe.unet(model_input, t)["sample"]
|
23 |
+
|
24 |
+
if radio == "color guidance":
|
25 |
+
x = x.detach().requires_grad_()
|
26 |
+
x0 = scheduler.step(noise_pred, t, x).pred_original_sample
|
27 |
+
loss = color_loss(x0, target_color) * guidance_loss_scale
|
28 |
+
cond_grad = -torch.autograd.grad(loss, x)[0]
|
29 |
+
x = x.detach() + cond_grad
|
30 |
+
elif radio == "text guidance":
|
31 |
+
cond_grad = 0
|
32 |
+
|
33 |
+
for cut in range(n_cuts):
|
34 |
+
|
35 |
+
# Set requires grad on x
|
36 |
+
x = x.detach().requires_grad_()
|
37 |
+
|
38 |
+
# Get the predicted x0:
|
39 |
+
x0 = scheduler.step(noise_pred, t, x).pred_original_sample
|
40 |
+
|
41 |
+
# Calculate loss
|
42 |
+
loss = clip_loss(x0, text_features) * guidance_loss_scale
|
43 |
+
|
44 |
+
# Get gradient (scale by n_cuts since we want the average)
|
45 |
+
cond_grad -= torch.autograd.grad(loss, x)[0] / n_cuts
|
46 |
+
|
47 |
+
|
48 |
+
# Modify x based on this gradient
|
49 |
+
alpha_bar = scheduler.alphas_cumprod[i]
|
50 |
+
x = x.detach() + cond_grad * alpha_bar.sqrt() # Note the additional scaling factor here!
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
x = scheduler.step(noise_pred, t, x).prev_sample
|
54 |
+
grid = torchvision.utils.make_grid(x, nrow=4)
|
55 |
+
im = grid.permute(1, 2, 0).cpu().clip(-1, 1) * 0.5 + 0.5
|
56 |
+
im = Image.fromarray(np.array(im * 255).astype(np.uint8))
|
57 |
+
# im.save("test.jpeg")
|
58 |
+
return im
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
|
61 |
+
title="""<h1 align="center">Make me a WikiArt</h1>
|
62 |
+
<p align="center">Try-out of exercise from HF Learn [Difussion Course] </p>
|
63 |
+
<p><center>
|
64 |
+
<a href="https://huggingface.co/learn/diffusion-course" target="_blank">[HF-Learn]</a>
|
65 |
+
</center></p>"""
|
66 |
+
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
gr.HTML(title)
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
# Create a radio button with options "no guidance", "color guidance", and "text guidance"
|
72 |
+
radio = gr.Radio(["no guidance", "color guidance", "text guidance"], label="Choose",value="no guidance")
|
73 |
+
|
74 |
+
# Create a textbox that only shows when 'text guidance' is selected
|
75 |
+
text = gr.Textbox(label="This text only shows when 'text guidance' is selected.", visible=False)
|
76 |
+
|
77 |
+
# Create a color picker (not a tuple)
|
78 |
+
color = gr.ColorPicker(label="color", value="#000000", visible=False)
|
79 |
+
|
80 |
+
# Create a slider that shows when any option is selected
|
81 |
+
slider = gr.Slider(label="guidance_scale", minimum=0, maximum=30, value=3, visible=False)
|
82 |
+
|
83 |
+
def update_visibility(radio):
|
84 |
+
value = radio # Get the selected value from the radio button
|
85 |
+
if value == "color guidance":
|
86 |
+
return [gr.Textbox(visible=False),gr.ColorPicker(visible=True),gr.Slider(visible=True)] #make it visible
|
87 |
+
elif value == "text guidance":
|
88 |
+
return [gr.Textbox(visible=True),gr.ColorPicker(visible=False),gr.Slider(visible=True)]
|
89 |
+
else:
|
90 |
+
return [gr.Textbox(visible=False),gr.ColorPicker(visible=False),gr.Slider(visible=False)]
|
91 |
+
|
92 |
+
radio.change(update_visibility, radio,[text,color,slider])
|
93 |
+
with gr.Column():
|
94 |
+
outputs = gr.Image(label="result")
|
|
|
95 |
|
96 |
+
with gr.Row():
|
97 |
+
gen_bttn=gr.Button(value="generate")
|
98 |
+
gen_bttn.click(generate, inputs=[radio,color,text,slider], outputs=outputs)
|
99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
demo.queue().launch()
|