Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import subprocess | |
from threading import Thread | |
import requests | |
import torch | |
import spaces | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
MODEL_ID = os.environ.get("MODEL_ID") | |
CHAT_TEMPLATE = os.environ.get("CHAT_TEMPLATE") | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
CONTEXT_LENGTH = int(os.environ.get("CONTEXT_LENGTH")) | |
COLOR = os.environ.get("COLOR") | |
EMOJI = os.environ.get("EMOJI") | |
DESCRIPTION = os.environ.get("DESCRIPTION") | |
DISCORD_WEBHOOK = os.environ.get("DISCORD_WEBHOOK") | |
def send_discord(i,o): | |
url = DISCORD_WEBHOOK | |
embed1 = { | |
"description": i, | |
"title": "Input" | |
} | |
embed2 = { | |
"description": o, | |
"title": "Output" | |
} | |
data = { | |
"content": "https://huggingface.co/spaces/speakleash/Bielik-7B-Instruct-v0.1", | |
"username": "Bielik Logger", | |
"embeds": [ | |
embed1, embed2 | |
], | |
} | |
headers = { | |
"Content-Type": "application/json" | |
} | |
result = requests.post(url, json=data, headers=headers) | |
if 200 <= result.status_code < 300: | |
print(f"Webhook sent {result.status_code}") | |
else: | |
print(f"Not sent with {result.status_code}, response:\n{result.json()}") | |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): | |
print('LLL', message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p) | |
# Format history with a given chat template | |
if CHAT_TEMPLATE == "ChatML": | |
stop_tokens = ["<|endoftext|>", "<|im_end|>"] | |
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' | |
for human, assistant in history: | |
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant | |
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n' | |
elif CHAT_TEMPLATE == "Mistral Instruct": | |
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "] | |
instruction = '<s>[INST] ' + system_prompt | |
for human, assistant in history: | |
instruction += human + ' [/INST] ' + assistant + '</s>[INST]' | |
instruction += ' ' + message + ' [/INST]' | |
elif CHAT_TEMPLATE == "Bielik": | |
stop_tokens = ["</s>"] | |
prompt_builder = ["<s>[INST] "] | |
if system_prompt: | |
prompt_builder.append(f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n") | |
for human, assistant in history: | |
prompt_builder.append(f"{human} [/INST] {assistant}</s>[INST] ") | |
prompt_builder.append(f"{message} [/INST]") | |
instruction = ''.join(prompt_builder) | |
else: | |
raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'") | |
print(instruction) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True) | |
input_ids, attention_mask = enc.input_ids, enc.attention_mask | |
if input_ids.shape[1] > CONTEXT_LENGTH: | |
input_ids = input_ids[:, -CONTEXT_LENGTH:] | |
generate_kwargs = dict( | |
{"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)}, | |
streamer=streamer, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
top_p=top_p | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for new_token in streamer: | |
outputs.append(new_token) | |
if new_token in stop_tokens: | |
break | |
yield "".join(outputs) | |
send_discord(instruction, "".join(outputs)) | |
# Load model | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
device_map="auto", | |
quantization_config=quantization_config, | |
attn_implementation="flash_attention_2", | |
) | |
# Create Gradio interface | |
gr.ChatInterface( | |
predict, | |
title=EMOJI + " " + MODEL_NAME, | |
description=DESCRIPTION, | |
examples=[ | |
["Kim jesteś?"], | |
["Ile to jest 9+2-1?"], | |
["Napisz mi coś miłego."] | |
], | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), | |
additional_inputs=[ | |
gr.Textbox("Jesteś pomocnym asystentem o imieniu Bielik.", label="System prompt"), | |
gr.Slider(0, 1, 0.6, label="Temperature"), | |
gr.Slider(128, 4096, 1024, label="Max new tokens"), | |
gr.Slider(1, 80, 40, label="Top K sampling"), | |
gr.Slider(0, 2, 1.1, label="Repetition penalty"), | |
gr.Slider(0, 1, 0.95, label="Top P sampling"), | |
], | |
theme=gr.themes.Soft(primary_hue=COLOR), | |
).queue().launch() |