spectre0108 commited on
Commit
6b636e4
·
verified ·
1 Parent(s): f4ef108

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -4
app.py CHANGED
@@ -2,8 +2,6 @@ import streamlit as st
2
  from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
3
  import tensorflow as tf
4
 
5
- # Load the fine-tuned model
6
- model_path = "./model" # Replace with your model path
7
  tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
8
  model = TFAutoModelForSequenceClassification.from_pretrained('spectre0108/roberta-finetune-slangs')
9
 
@@ -13,10 +11,8 @@ def predict_sentiment(text):
13
  output = model(tokenized)
14
  logits = output.logits.numpy()
15
 
16
- # Apply softmax to each row (axis=1)
17
  probabilities = tf.nn.softmax(logits, axis=1).numpy()
18
 
19
- # Get the predicted label (class with the highest probability)
20
  predicted_label = tf.argmax(probabilities, axis=1).numpy().item()
21
  positive_prob = probabilities[0][1]
22
  negative_prob = probabilities[0][0]
 
2
  from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
3
  import tensorflow as tf
4
 
 
 
5
  tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
6
  model = TFAutoModelForSequenceClassification.from_pretrained('spectre0108/roberta-finetune-slangs')
7
 
 
11
  output = model(tokenized)
12
  logits = output.logits.numpy()
13
 
 
14
  probabilities = tf.nn.softmax(logits, axis=1).numpy()
15
 
 
16
  predicted_label = tf.argmax(probabilities, axis=1).numpy().item()
17
  positive_prob = probabilities[0][1]
18
  negative_prob = probabilities[0][0]