File size: 14,930 Bytes
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e534ea9
9c801fe
 
 
e534ea9
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e534ea9
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d2f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8cd99
e6d2f62
9c801fe
 
 
 
 
 
 
 
 
 
746ba6e
 
 
 
 
 
 
 
 
 
e6d2f62
 
9c801fe
e6d2f62
9c801fe
 
 
a0ba0fc
a4c07a9
5296ffa
 
a4c07a9
5296ffa
 
 
 
 
 
6e8cd99
5296ffa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c801fe
 
a4c07a9
9c801fe
e534ea9
9c801fe
d2e8728
 
 
 
5296ffa
a4c07a9
d2e8728
 
 
9c801fe
d2e8728
 
 
9c801fe
746ba6e
e6d2f62
 
9c801fe
 
a0ba0fc
9c801fe
 
 
d2e8728
 
 
6e8cd99
66e45c9
 
9c801fe
 
a0ba0fc
9c801fe
5296ffa
d2e8728
 
 
6e8cd99
9c801fe
66e45c9
e6d2f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8cd99
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
e6d2f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d2f62
9c801fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
"""
https://github.com/mozilla/DeepSpeech/blob/master/data/lm/generate_lm.py
"""

import os
import gzip
import io
import sys
import subprocess
import functools

from importlib.metadata import version
from collections import Counter
from pathlib import Path

import gradio as gr

try:
    import kenlm
except ImportError:
    print("Please install `kenlm` library.")

# Config
title = "KenLM UI"

app_dir = "/home/hf-space/app"
kenlm_bin = f"{app_dir}/kenlm/build/bin"

examples = [
    ["demo.txt", 3, True],
]

description_head = f"""
# {title}

## Overview

This app gives you ability to debug KenLM models, enhance text using a trained model, and create a new KenLM model (Kneser-Ney) from a text corpus.
""".strip()


tech_env = f"""
#### Environment

- Python: {sys.version}
""".strip()

tech_libraries = f"""
#### Libraries

- kenlm: {version("kenlm")}
- gradio: {version("gradio")}
""".strip()


def convert_and_filter_topk(input_txt, top_k):
    """Convert to lowercase, count word occurrences and save top-k words to a file"""

    counter = Counter()
    data_lower = "/tmp/lower.txt.gz"

    print("\nConverting to lowercase and counting word occurrences ...")
    with io.TextIOWrapper(
        io.BufferedWriter(gzip.open(data_lower, "w+")), encoding="utf-8"
    ) as file_out:
        # Open the input file either from input.txt or input.txt.gz
        _, file_extension = os.path.splitext(input_txt)
        if file_extension == ".gz":
            file_in = io.TextIOWrapper(
                io.BufferedReader(gzip.open(input_txt)), encoding="utf-8"
            )
        else:
            file_in = open(input_txt, encoding="utf-8")

        for line in file_in:
            line_lower = line.lower()
            counter.update(line_lower.split())
            file_out.write(line_lower)

        file_in.close()

    # Save top-k words
    print("\nSaving top {} words ...".format(top_k))
    top_counter = counter.most_common(top_k)
    vocab_str = "\n".join(word for word, count in top_counter)
    vocab_path = "/tmp/vocab-{}.txt".format(top_k)
    with open(vocab_path, "w+") as file:
        file.write(vocab_str)

    print("\nCalculating word statistics ...")
    total_words = sum(counter.values())
    print("  Your text file has {} words in total".format(total_words))
    print("  It has {} unique words".format(len(counter)))
    top_words_sum = sum(count for word, count in top_counter)
    word_fraction = (top_words_sum / total_words) * 100
    print(
        "  Your top-{} words are {:.4f} percent of all words".format(
            top_k, word_fraction
        )
    )
    print('  Your most common word "{}" occurred {} times'.format(*top_counter[0]))
    last_word, last_count = top_counter[-1]
    print(
        '  The least common word in your top-k is "{}" with {} times'.format(
            last_word, last_count
        )
    )
    for i, (w, c) in enumerate(reversed(top_counter)):
        if c > last_count:
            print(
                '  The first word with {} occurrences is "{}" at place {}'.format(
                    c, w, len(top_counter) - 1 - i
                )
            )
            break

    return data_lower, vocab_str


def inference_model(kenlm_model, text):
    if not kenlm_model:
        raise gr.Error("Please upload your KenLM model.")

    if not text:
        raise gr.Error("Please paste the text to score.")

    model = kenlm.Model(kenlm_model)
    results = []

    score = model.score(text, bos=True, eos=True)

    results.append(f"Score: {score}")
    results.append("---")

    # Show scores and n-gram matches
    words = ["<s>"] + text.split() + ["</s>"]
    for i, (prob, length, oov) in enumerate(model.full_scores(text)):
        results.append(
            "{0} {1}: {2}".format(prob, length, " ".join(words[i + 2 - length : i + 2]))
        )
        if oov:
            results.append('\t"{0}" is an OOV'.format(words[i + 1]))

    results.append("---")

    # Find out-of-vocabulary words
    for w in words:
        if w not in model:
            results.append('"{0}" is an OOV'.format(w))

    return "\n".join(results)


def score(lm, word, context):
    new_context = kenlm.State()
    full_score = lm.BaseFullScore(context, word, new_context)
    if full_score.oov:
        return -42, new_context  # odefault ov score looks too high
    return full_score.log_prob, new_context


@functools.lru_cache(maxsize=2**10)
def segment(lm, text, context=None, maxlen=20):
    if context is None:
        context = kenlm.State()
        lm.NullContextWrite(context)

    if not text:
        return 0.0, []

    textlen = min(len(text), maxlen)
    splits = [(text[: i + 1], text[i + 1 :]) for i in range(textlen)]

    candidates = []
    for word, remain_word in splits:
        first_prob, new_context = score(lm, word, context)
        remain_prob, remain_word = segment(lm, remain_word, new_context)

        candidates.append((first_prob + remain_prob, [word] + remain_word))

    return max(candidates)


def enhance_text(kenlm_model, text):
    if not kenlm_model:
        raise gr.Error("Please upload your KenLM model.")

    if not text:
        raise gr.Error("Please paste the text to score.")

    lm = kenlm.LanguageModel(kenlm_model)

    label = text.replace(" ", "")
    _, fixed_label_chunks = segment(lm, label)
    fixed_label = " ".join(fixed_label_chunks)

    return fixed_label


def generate_files(results):
    # Write words to a file
    words = [r.split() for r in results]
    words = list(set([w for r in words for w in r]))

    with open("/tmp/model_vocab.txt", "w") as f:
        f.write("\n".join(words))

    # Generate tokens file
    tokens = set()
    for word in words:
        tokens.update(list(word))
    # add "|" token
    tokens.add("|")

    with open("/tmp/model_tokens.txt", "w") as f:
        tokens_ordered = sorted(tokens)
        f.write("\n".join(tokens_ordered))

    # Generate lexicon file
    with open("/tmp/model_lexicon.txt", "w") as f:
        for word in words:
            splitted_word = " ".join(list(word + "|"))
            f.write(f"{word}\t{splitted_word}\n")


def text_to_kenlm(
    _text_file,
    _order,
    _do_lowercase,
    _binary_a_bits,
    _binary_b_bits,
    _binary_q_bits,
    _binary_type,
    _arpa_prune,
    _do_quantize,
    _topk_words,
    _do_limit_topk,
):
    if not _text_file:
        raise gr.Error("Please add a file.")

    if not _order:
        raise gr.Error("Please add an order.")

    gr.Info("Started to create a model, wait...")

    results = []

    # Read the file
    with open(_text_file, "r") as f:
        text = f.read()
        for line in text.split("\n"):
            if _do_lowercase:
                line = line.lower()
            results.append(line)

    # Remove previous files
    for file in [
        "/tmp/intermediate.txt", "/tmp/my_model.arpa", "/tmp/my_model-trie.bin", "/tmp/my_model_correct.arpa",
        "/tmp/my_model-trie-10000-words.arpa", "/tmp/my_model-trie-10000-words.bin",
        "/tmp/model_vocab.txt", "/tmp/model_lexicon.txt", "/tmp/model_tokens.txt",
    ]:
        if os.path.exists(file):
            os.remove(file)

    # Generate files: vocab, lexicon, tokens
    generate_files(results)

    # Write to intermediate file
    intermediate_file = "/tmp/intermediate.txt"
    with open(intermediate_file, "w") as f:
        f.write(" ".join(results))

    file_name = "/tmp/my_model.arpa"
    _do_model = True

    # Commands to run in the container
    if _do_model:
        cmd = (
            f"{kenlm_bin}/lmplz -T /tmp -S 80% --text {intermediate_file} --arpa /tmp/my_model.arpa -o {_order} --prune {_arpa_prune} --discount_fallback",
        )
        r = subprocess.run(cmd, shell=True)
        print(r)
        if r.returncode != 0:
            raise gr.Error("Failed to create model")

        file_name_fixed = "/tmp/my_model_correct.arpa"

        # Fix the ARPA file
        with (
            open(file_name, "r") as read_file,
            open(file_name_fixed, "w") as write_file,
        ):
            has_added_eos = False
            for line in read_file:
                if not has_added_eos and "ngram 1=" in line:
                    count = line.strip().split("=")[-1]
                    write_file.write(line.replace(f"{count}", f"{int(count) + 1}"))
                elif not has_added_eos and "<s>" in line:
                    write_file.write(line)
                    write_file.write(line.replace("<s>", "</s>"))
                    has_added_eos = True
                else:
                    write_file.write(line)
        # Replace the file name
        file_name = file_name_fixed

    if _do_limit_topk:
        file_name_words = f"/tmp/my_model-{_topk_words}-words.arpa"

        _, vocab_str = convert_and_filter_topk(intermediate_file, _topk_words)

        r = subprocess.run(
            [
                os.path.join(kenlm_bin, "filter"),
                "single",
                "model:{}".format(file_name),
                file_name_words,
            ],
            input=vocab_str.encode("utf-8"),
            check=True,
        )
        print(r)
        if r.returncode != 0:
            raise gr.Error("Failed to filter the model.")

        # Regenerate files: vocab, lexicon, tokens
        generate_files(vocab_str.split("\n"))

        if _do_quantize:
            file_name_quantized = (
                f"/tmp/my_model-{_binary_type}-{_topk_words}-words.bin"
            )

            cmd = f"{kenlm_bin}/build_binary -a {_binary_a_bits} -b {_binary_b_bits} -q {_binary_q_bits} -v {_binary_type} {file_name} {file_name_quantized}"
            r = subprocess.run(cmd, shell=True)
            print(r)
            if r.returncode != 0:
                raise gr.Error("Failed to quantize model")

            file_name = file_name_quantized
    else:
        if _do_quantize:
            file_name = f"/tmp/my_model-{_binary_type}.bin"

            cmd = f"{kenlm_bin}/build_binary -a {_binary_a_bits} -b {_binary_b_bits} -q {_binary_q_bits} -v {_binary_type} {file_name} {file_name}"
            r = subprocess.run(cmd, shell=True)
            print(r)
            if r.returncode != 0:
                raise gr.Error("Failed to quantize model")

    gr.Success("Model created.")

    model_file = gr.DownloadButton(
        value=Path(file_name), label=f"Download: {file_name}"
    )

    vocab_file = gr.DownloadButton(
        value=Path("/tmp/model_vocab.txt"),
        label="Created model_vocab.txt",
    )

    lexicon_file = gr.DownloadButton(
        value=Path("/tmp/model_lexicon.txt"),
        label="Created model_lexicon.txt",
    )

    tokens_file = gr.DownloadButton(
        value=Path("/tmp/model_tokens.txt"),
        label="Created model_tokens.txt",
    )

    return [model_file, vocab_file, lexicon_file, tokens_file]


with gr.Blocks(
    title=title,
    analytics_enabled=False,
    theme=gr.themes.Base(),
) as demo:
    gr.Markdown(description_head)
    gr.Markdown("## Usage")

    with gr.Tab("Evaluate"):
        with gr.Row():
            with gr.Column():
                kenlm_model = gr.File(label="KenLM model")

                text = gr.Text(label="Paste text")

            results = gr.Textbox(
                label="Scores",
                placeholder="Scores will be here.",
                show_copy_button=True,
                lines=10,
            )

        gr.Button("Run").click(
            inference_model,
            inputs=[kenlm_model, text],
            outputs=results,
        )

    with gr.Tab("Enhance"):
        with gr.Row():
            with gr.Column():
                kenlm_model = gr.File(label="Your KenLM model")

                text = gr.Text(label="Paste text to enhance")

            results = gr.Textbox(
                label="Results",
                placeholder="Results will be here.",
                show_copy_button=True,
                lines=10,
            )

        gr.Button("Run").click(
            enhance_text,
            inputs=[kenlm_model, text],
            outputs=results,
        )

    with gr.Tab("Create KenLM model"):
        with gr.Row():
            with gr.Column():
                text_file = gr.File(label="Text corpus")

                order = gr.Number(label="Order", value=3, minimum=1, maximum=5)

                do_lowercase = gr.Checkbox(
                    label="Lowercase text",
                )

                arpa_prune = gr.Text(
                    label="Prune",
                    value="0 1 1",
                )

                binary_a_bits = gr.Number(
                    label="Binary A bits",
                    value=256,
                )

                binary_b_bits = gr.Number(
                    label="Binary B bits",
                    value=7,
                )

                binary_q_bits = gr.Number(
                    label="Binary Q bits",
                    value=8,
                )

                binary_type = gr.Text(
                    label="Build binary data structure type",
                    value="trie",
                )

                do_quantize = gr.Checkbox(
                    label="Quantize model",
                    value=False,
                )

                topk_words = gr.Number(
                    label="Top-K words",
                    value=10000,
                )

                do_limit_topk = gr.Checkbox(
                    label="Limit vocabulary by Top-K words",
                    value=False,
                )

            with gr.Column():
                kenlm_model = gr.DownloadButton(
                    label="Created KenLM model",
                )

                vocab_file = gr.DownloadButton(
                    label="Created model_vocab.txt",
                )

                lexicon_file = gr.DownloadButton(
                    label="Created model_lexicon.txt",
                )

                tokens_file = gr.DownloadButton(
                    label="Created model_tokens.txt",
                )

        gr.Button("Create").click(
            text_to_kenlm,
            inputs=[
                text_file,
                order,
                do_lowercase,
                binary_a_bits,
                binary_b_bits,
                binary_q_bits,
                binary_type,
                arpa_prune,
                do_quantize,
                topk_words,
                do_limit_topk,
            ],
            outputs=[kenlm_model, vocab_file, lexicon_file, tokens_file],
        )

        with gr.Row():
            gr.Examples(
                label="Choose an example",
                inputs=[text_file, order, do_lowercase, do_quantize],
                examples=examples,
            )

    gr.Markdown("### Gradio app uses:")
    gr.Markdown(tech_env)
    gr.Markdown(tech_libraries)

if __name__ == "__main__":
    demo.queue()
    demo.launch()