File size: 14,930 Bytes
9c801fe e534ea9 9c801fe e534ea9 9c801fe e534ea9 9c801fe e6d2f62 9c801fe 6e8cd99 e6d2f62 9c801fe 746ba6e e6d2f62 9c801fe e6d2f62 9c801fe a0ba0fc a4c07a9 5296ffa a4c07a9 5296ffa 6e8cd99 5296ffa 9c801fe a4c07a9 9c801fe e534ea9 9c801fe d2e8728 5296ffa a4c07a9 d2e8728 9c801fe d2e8728 9c801fe 746ba6e e6d2f62 9c801fe a0ba0fc 9c801fe d2e8728 6e8cd99 66e45c9 9c801fe a0ba0fc 9c801fe 5296ffa d2e8728 6e8cd99 9c801fe 66e45c9 e6d2f62 9c801fe 6e8cd99 9c801fe e6d2f62 9c801fe e6d2f62 9c801fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
"""
https://github.com/mozilla/DeepSpeech/blob/master/data/lm/generate_lm.py
"""
import os
import gzip
import io
import sys
import subprocess
import functools
from importlib.metadata import version
from collections import Counter
from pathlib import Path
import gradio as gr
try:
import kenlm
except ImportError:
print("Please install `kenlm` library.")
# Config
title = "KenLM UI"
app_dir = "/home/hf-space/app"
kenlm_bin = f"{app_dir}/kenlm/build/bin"
examples = [
["demo.txt", 3, True],
]
description_head = f"""
# {title}
## Overview
This app gives you ability to debug KenLM models, enhance text using a trained model, and create a new KenLM model (Kneser-Ney) from a text corpus.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
""".strip()
tech_libraries = f"""
#### Libraries
- kenlm: {version("kenlm")}
- gradio: {version("gradio")}
""".strip()
def convert_and_filter_topk(input_txt, top_k):
"""Convert to lowercase, count word occurrences and save top-k words to a file"""
counter = Counter()
data_lower = "/tmp/lower.txt.gz"
print("\nConverting to lowercase and counting word occurrences ...")
with io.TextIOWrapper(
io.BufferedWriter(gzip.open(data_lower, "w+")), encoding="utf-8"
) as file_out:
# Open the input file either from input.txt or input.txt.gz
_, file_extension = os.path.splitext(input_txt)
if file_extension == ".gz":
file_in = io.TextIOWrapper(
io.BufferedReader(gzip.open(input_txt)), encoding="utf-8"
)
else:
file_in = open(input_txt, encoding="utf-8")
for line in file_in:
line_lower = line.lower()
counter.update(line_lower.split())
file_out.write(line_lower)
file_in.close()
# Save top-k words
print("\nSaving top {} words ...".format(top_k))
top_counter = counter.most_common(top_k)
vocab_str = "\n".join(word for word, count in top_counter)
vocab_path = "/tmp/vocab-{}.txt".format(top_k)
with open(vocab_path, "w+") as file:
file.write(vocab_str)
print("\nCalculating word statistics ...")
total_words = sum(counter.values())
print(" Your text file has {} words in total".format(total_words))
print(" It has {} unique words".format(len(counter)))
top_words_sum = sum(count for word, count in top_counter)
word_fraction = (top_words_sum / total_words) * 100
print(
" Your top-{} words are {:.4f} percent of all words".format(
top_k, word_fraction
)
)
print(' Your most common word "{}" occurred {} times'.format(*top_counter[0]))
last_word, last_count = top_counter[-1]
print(
' The least common word in your top-k is "{}" with {} times'.format(
last_word, last_count
)
)
for i, (w, c) in enumerate(reversed(top_counter)):
if c > last_count:
print(
' The first word with {} occurrences is "{}" at place {}'.format(
c, w, len(top_counter) - 1 - i
)
)
break
return data_lower, vocab_str
def inference_model(kenlm_model, text):
if not kenlm_model:
raise gr.Error("Please upload your KenLM model.")
if not text:
raise gr.Error("Please paste the text to score.")
model = kenlm.Model(kenlm_model)
results = []
score = model.score(text, bos=True, eos=True)
results.append(f"Score: {score}")
results.append("---")
# Show scores and n-gram matches
words = ["<s>"] + text.split() + ["</s>"]
for i, (prob, length, oov) in enumerate(model.full_scores(text)):
results.append(
"{0} {1}: {2}".format(prob, length, " ".join(words[i + 2 - length : i + 2]))
)
if oov:
results.append('\t"{0}" is an OOV'.format(words[i + 1]))
results.append("---")
# Find out-of-vocabulary words
for w in words:
if w not in model:
results.append('"{0}" is an OOV'.format(w))
return "\n".join(results)
def score(lm, word, context):
new_context = kenlm.State()
full_score = lm.BaseFullScore(context, word, new_context)
if full_score.oov:
return -42, new_context # odefault ov score looks too high
return full_score.log_prob, new_context
@functools.lru_cache(maxsize=2**10)
def segment(lm, text, context=None, maxlen=20):
if context is None:
context = kenlm.State()
lm.NullContextWrite(context)
if not text:
return 0.0, []
textlen = min(len(text), maxlen)
splits = [(text[: i + 1], text[i + 1 :]) for i in range(textlen)]
candidates = []
for word, remain_word in splits:
first_prob, new_context = score(lm, word, context)
remain_prob, remain_word = segment(lm, remain_word, new_context)
candidates.append((first_prob + remain_prob, [word] + remain_word))
return max(candidates)
def enhance_text(kenlm_model, text):
if not kenlm_model:
raise gr.Error("Please upload your KenLM model.")
if not text:
raise gr.Error("Please paste the text to score.")
lm = kenlm.LanguageModel(kenlm_model)
label = text.replace(" ", "")
_, fixed_label_chunks = segment(lm, label)
fixed_label = " ".join(fixed_label_chunks)
return fixed_label
def generate_files(results):
# Write words to a file
words = [r.split() for r in results]
words = list(set([w for r in words for w in r]))
with open("/tmp/model_vocab.txt", "w") as f:
f.write("\n".join(words))
# Generate tokens file
tokens = set()
for word in words:
tokens.update(list(word))
# add "|" token
tokens.add("|")
with open("/tmp/model_tokens.txt", "w") as f:
tokens_ordered = sorted(tokens)
f.write("\n".join(tokens_ordered))
# Generate lexicon file
with open("/tmp/model_lexicon.txt", "w") as f:
for word in words:
splitted_word = " ".join(list(word + "|"))
f.write(f"{word}\t{splitted_word}\n")
def text_to_kenlm(
_text_file,
_order,
_do_lowercase,
_binary_a_bits,
_binary_b_bits,
_binary_q_bits,
_binary_type,
_arpa_prune,
_do_quantize,
_topk_words,
_do_limit_topk,
):
if not _text_file:
raise gr.Error("Please add a file.")
if not _order:
raise gr.Error("Please add an order.")
gr.Info("Started to create a model, wait...")
results = []
# Read the file
with open(_text_file, "r") as f:
text = f.read()
for line in text.split("\n"):
if _do_lowercase:
line = line.lower()
results.append(line)
# Remove previous files
for file in [
"/tmp/intermediate.txt", "/tmp/my_model.arpa", "/tmp/my_model-trie.bin", "/tmp/my_model_correct.arpa",
"/tmp/my_model-trie-10000-words.arpa", "/tmp/my_model-trie-10000-words.bin",
"/tmp/model_vocab.txt", "/tmp/model_lexicon.txt", "/tmp/model_tokens.txt",
]:
if os.path.exists(file):
os.remove(file)
# Generate files: vocab, lexicon, tokens
generate_files(results)
# Write to intermediate file
intermediate_file = "/tmp/intermediate.txt"
with open(intermediate_file, "w") as f:
f.write(" ".join(results))
file_name = "/tmp/my_model.arpa"
_do_model = True
# Commands to run in the container
if _do_model:
cmd = (
f"{kenlm_bin}/lmplz -T /tmp -S 80% --text {intermediate_file} --arpa /tmp/my_model.arpa -o {_order} --prune {_arpa_prune} --discount_fallback",
)
r = subprocess.run(cmd, shell=True)
print(r)
if r.returncode != 0:
raise gr.Error("Failed to create model")
file_name_fixed = "/tmp/my_model_correct.arpa"
# Fix the ARPA file
with (
open(file_name, "r") as read_file,
open(file_name_fixed, "w") as write_file,
):
has_added_eos = False
for line in read_file:
if not has_added_eos and "ngram 1=" in line:
count = line.strip().split("=")[-1]
write_file.write(line.replace(f"{count}", f"{int(count) + 1}"))
elif not has_added_eos and "<s>" in line:
write_file.write(line)
write_file.write(line.replace("<s>", "</s>"))
has_added_eos = True
else:
write_file.write(line)
# Replace the file name
file_name = file_name_fixed
if _do_limit_topk:
file_name_words = f"/tmp/my_model-{_topk_words}-words.arpa"
_, vocab_str = convert_and_filter_topk(intermediate_file, _topk_words)
r = subprocess.run(
[
os.path.join(kenlm_bin, "filter"),
"single",
"model:{}".format(file_name),
file_name_words,
],
input=vocab_str.encode("utf-8"),
check=True,
)
print(r)
if r.returncode != 0:
raise gr.Error("Failed to filter the model.")
# Regenerate files: vocab, lexicon, tokens
generate_files(vocab_str.split("\n"))
if _do_quantize:
file_name_quantized = (
f"/tmp/my_model-{_binary_type}-{_topk_words}-words.bin"
)
cmd = f"{kenlm_bin}/build_binary -a {_binary_a_bits} -b {_binary_b_bits} -q {_binary_q_bits} -v {_binary_type} {file_name} {file_name_quantized}"
r = subprocess.run(cmd, shell=True)
print(r)
if r.returncode != 0:
raise gr.Error("Failed to quantize model")
file_name = file_name_quantized
else:
if _do_quantize:
file_name = f"/tmp/my_model-{_binary_type}.bin"
cmd = f"{kenlm_bin}/build_binary -a {_binary_a_bits} -b {_binary_b_bits} -q {_binary_q_bits} -v {_binary_type} {file_name} {file_name}"
r = subprocess.run(cmd, shell=True)
print(r)
if r.returncode != 0:
raise gr.Error("Failed to quantize model")
gr.Success("Model created.")
model_file = gr.DownloadButton(
value=Path(file_name), label=f"Download: {file_name}"
)
vocab_file = gr.DownloadButton(
value=Path("/tmp/model_vocab.txt"),
label="Created model_vocab.txt",
)
lexicon_file = gr.DownloadButton(
value=Path("/tmp/model_lexicon.txt"),
label="Created model_lexicon.txt",
)
tokens_file = gr.DownloadButton(
value=Path("/tmp/model_tokens.txt"),
label="Created model_tokens.txt",
)
return [model_file, vocab_file, lexicon_file, tokens_file]
with gr.Blocks(
title=title,
analytics_enabled=False,
theme=gr.themes.Base(),
) as demo:
gr.Markdown(description_head)
gr.Markdown("## Usage")
with gr.Tab("Evaluate"):
with gr.Row():
with gr.Column():
kenlm_model = gr.File(label="KenLM model")
text = gr.Text(label="Paste text")
results = gr.Textbox(
label="Scores",
placeholder="Scores will be here.",
show_copy_button=True,
lines=10,
)
gr.Button("Run").click(
inference_model,
inputs=[kenlm_model, text],
outputs=results,
)
with gr.Tab("Enhance"):
with gr.Row():
with gr.Column():
kenlm_model = gr.File(label="Your KenLM model")
text = gr.Text(label="Paste text to enhance")
results = gr.Textbox(
label="Results",
placeholder="Results will be here.",
show_copy_button=True,
lines=10,
)
gr.Button("Run").click(
enhance_text,
inputs=[kenlm_model, text],
outputs=results,
)
with gr.Tab("Create KenLM model"):
with gr.Row():
with gr.Column():
text_file = gr.File(label="Text corpus")
order = gr.Number(label="Order", value=3, minimum=1, maximum=5)
do_lowercase = gr.Checkbox(
label="Lowercase text",
)
arpa_prune = gr.Text(
label="Prune",
value="0 1 1",
)
binary_a_bits = gr.Number(
label="Binary A bits",
value=256,
)
binary_b_bits = gr.Number(
label="Binary B bits",
value=7,
)
binary_q_bits = gr.Number(
label="Binary Q bits",
value=8,
)
binary_type = gr.Text(
label="Build binary data structure type",
value="trie",
)
do_quantize = gr.Checkbox(
label="Quantize model",
value=False,
)
topk_words = gr.Number(
label="Top-K words",
value=10000,
)
do_limit_topk = gr.Checkbox(
label="Limit vocabulary by Top-K words",
value=False,
)
with gr.Column():
kenlm_model = gr.DownloadButton(
label="Created KenLM model",
)
vocab_file = gr.DownloadButton(
label="Created model_vocab.txt",
)
lexicon_file = gr.DownloadButton(
label="Created model_lexicon.txt",
)
tokens_file = gr.DownloadButton(
label="Created model_tokens.txt",
)
gr.Button("Create").click(
text_to_kenlm,
inputs=[
text_file,
order,
do_lowercase,
binary_a_bits,
binary_b_bits,
binary_q_bits,
binary_type,
arpa_prune,
do_quantize,
topk_words,
do_limit_topk,
],
outputs=[kenlm_model, vocab_file, lexicon_file, tokens_file],
)
with gr.Row():
gr.Examples(
label="Choose an example",
inputs=[text_file, order, do_lowercase, do_quantize],
examples=examples,
)
gr.Markdown("### Gradio app uses:")
gr.Markdown(tech_env)
gr.Markdown(tech_libraries)
if __name__ == "__main__":
demo.queue()
demo.launch()
|