File size: 23,200 Bytes
3ff6c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c39b8bf
da7b5b9
 
3ff6c9f
da7b5b9
 
3ff6c9f
da7b5b9
 
 
156571b
da7b5b9
 
3ff6c9f
 
 
 
 
 
 
 
 
 
 
 
131ee98
3ff6c9f
da7b5b9
3ff6c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7b5b9
 
 
3ff6c9f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
from copy import deepcopy
from os.path import basename, splitext

import librosa
import numpy as np
import pandas as pd
import soundfile as sf
import torch
import torchaudio
from scipy.ndimage import gaussian_filter
from sklearn.cluster import AgglomerativeClustering, KMeans, SpectralClustering
from sklearn.metrics import pairwise_distances
from speechbrain.pretrained import EncoderClassifier


def similarity_matrix(embeds, metric="cosine"):
    return pairwise_distances(embeds, metric=metric)


def cluster_AHC(embeds, n_clusters=None, threshold=None, metric="cosine", **kwargs):
    """
    Cluster embeds using Agglomerative Hierarchical Clustering
    """
    if n_clusters is None:
        assert threshold, "If num_clusters is not defined, threshold must be defined"

    S = similarity_matrix(embeds, metric=metric)

    if n_clusters is None:
        cluster_model = AgglomerativeClustering(
            n_clusters=None,
            affinity="precomputed",
            linkage="average",
            compute_full_tree=True,
            distance_threshold=threshold,
        )

        return cluster_model.fit_predict(S)
    else:
        cluster_model = AgglomerativeClustering(
            n_clusters=n_clusters, affinity="precomputed", linkage="average"
        )

        return cluster_model.fit_predict(S)


##########################################
# Spectral clustering
# A lot of these methods are lifted from
# https://github.com/wq2012/SpectralCluster
##########################################


def cluster_SC(embeds, n_clusters=None, threshold=None, enhance_sim=True, **kwargs):
    """
    Cluster embeds using Spectral Clustering
    """
    if n_clusters is None:
        assert threshold, "If num_clusters is not defined, threshold must be defined"

    S = compute_affinity_matrix(embeds)
    if enhance_sim:
        S = sim_enhancement(S)

    if n_clusters is None:
        (eigenvalues, eigenvectors) = compute_sorted_eigenvectors(S)
        # Get number of clusters.
        k = compute_number_of_clusters(eigenvalues, 100, threshold)

        # Get spectral embeddings.
        spectral_embeddings = eigenvectors[:, :k]

        # Run K-Means++ on spectral embeddings.
        # Note: The correct way should be using a K-Means implementation
        # that supports customized distance measure such as cosine distance.
        # This implemention from scikit-learn does NOT, which is inconsistent
        # with the paper.
        kmeans_clusterer = KMeans(
            n_clusters=k, init="k-means++", max_iter=300, random_state=0
        )
        labels = kmeans_clusterer.fit_predict(spectral_embeddings)
        return labels
    else:
        cluster_model = SpectralClustering(
            n_clusters=n_clusters, affinity="precomputed"
        )

        return cluster_model.fit_predict(S)


def diagonal_fill(A):
    """
    Sets the diagonal elemnts of the matrix to the max of each row
    """
    np.fill_diagonal(A, 0.0)
    A[np.diag_indices(A.shape[0])] = np.max(A, axis=1)
    return A


def gaussian_blur(A, sigma=1.0):
    """
    Does a gaussian blur on the affinity matrix
    """
    return gaussian_filter(A, sigma=sigma)


def row_threshold_mult(A, p=0.95, mult=0.01):
    """
    For each row multiply elements smaller than the row's p'th percentile by mult
    """
    percentiles = np.percentile(A, p * 100, axis=1)
    mask = A < percentiles[:, np.newaxis]

    A = (mask * mult * A) + (~mask * A)
    return A


def symmetrization(A):
    """
    Symmeterization: Y_{i,j} = max(S_{ij}, S_{ji})
    """
    return np.maximum(A, A.T)


def diffusion(A):
    """
    Diffusion: Y <- YY^T
    """
    return np.dot(A, A.T)


def row_max_norm(A):
    """
    Row-wise max normalization: S_{ij} = Y_{ij} / max_k(Y_{ik})
    """
    maxes = np.amax(A, axis=1)
    return A / maxes


def sim_enhancement(A):
    func_order = [
        diagonal_fill,
        gaussian_blur,
        row_threshold_mult,
        symmetrization,
        diffusion,
        row_max_norm,
    ]
    for f in func_order:
        A = f(A)
    return A


def compute_affinity_matrix(X):
    """Compute the affinity matrix from data.
    Note that the range of affinity is [0,1].
    Args:
        X: numpy array of shape (n_samples, n_features)
    Returns:
        affinity: numpy array of shape (n_samples, n_samples)
    """
    # Normalize the data.
    l2_norms = np.linalg.norm(X, axis=1)
    X_normalized = X / l2_norms[:, None]
    # Compute cosine similarities. Range is [-1,1].
    cosine_similarities = np.matmul(X_normalized, np.transpose(X_normalized))
    # Compute the affinity. Range is [0,1].
    # Note that this step is not mentioned in the paper!
    affinity = (cosine_similarities + 1.0) / 2.0
    return affinity


def compute_sorted_eigenvectors(A):
    """Sort eigenvectors by the real part of eigenvalues.
    Args:
        A: the matrix to perform eigen analysis with shape (M, M)
    Returns:
        w: sorted eigenvalues of shape (M,)
        v: sorted eigenvectors, where v[;, i] corresponds to ith largest
           eigenvalue
    """
    # Eigen decomposition.
    eigenvalues, eigenvectors = np.linalg.eig(A)
    eigenvalues = eigenvalues.real
    eigenvectors = eigenvectors.real
    # Sort from largest to smallest.
    index_array = np.argsort(-eigenvalues)
    # Re-order.
    w = eigenvalues[index_array]
    v = eigenvectors[:, index_array]
    return w, v


def compute_number_of_clusters(eigenvalues, max_clusters=None, stop_eigenvalue=1e-2):
    """Compute number of clusters using EigenGap principle.
    Args:
        eigenvalues: sorted eigenvalues of the affinity matrix
        max_clusters: max number of clusters allowed
        stop_eigenvalue: we do not look at eigen values smaller than this
    Returns:
        number of clusters as an integer
    """
    max_delta = 0
    max_delta_index = 0
    range_end = len(eigenvalues)
    if max_clusters and max_clusters + 1 < range_end:
        range_end = max_clusters + 1
    for i in range(1, range_end):
        if eigenvalues[i - 1] < stop_eigenvalue:
            break
        delta = eigenvalues[i - 1] / eigenvalues[i]
        if delta > max_delta:
            max_delta = delta
            max_delta_index = i
    return max_delta_index


class Diarizer:
    def __init__(
            self, device='cuda:0', embed_model="xvec", cluster_method="sc", window=1.5, period=0.75
    ):
        self.device = device
        assert embed_model in [
            "xvec",
            "ecapa",
        ], "Only xvec and ecapa are supported options"
        assert cluster_method in [
            "ahc",
            "sc",
        ], "Only ahc and sc in the supported clustering options"

        if cluster_method == "ahc":
            self.cluster = cluster_AHC
        if cluster_method == "sc":
            self.cluster = cluster_SC

        self.vad_model, self.get_speech_ts = self.setup_VAD()

        self.run_opts = ({"device": self.device})

        if embed_model == "ecapa":
            self.embed_model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir="pretrained_models/spkrec-ecapa-voxceleb",
                run_opts=self.run_opts,
            )

        self.window = window
        self.period = period

    def setup_VAD(self):
        model, utils = torch.hub.load(
            repo_or_dir="snakers4/silero-vad", model="silero_vad"
        )
        # force_reload=True)

        get_speech_ts = utils[0]
        return model, get_speech_ts

    def vad(self, signal):
        """
        Runs the VAD model on the signal
        """
        return self.get_speech_ts(signal.to(self.device), self.vad_model.to(self.device))

    def windowed_embeds(self, signal, fs, window=1.5, period=0.75):
        """
        Calculates embeddings for windows across the signal

        window: length of the window, in seconds
        period: jump of the window, in seconds

        returns: embeddings, segment info
        """
        len_window = int(window * fs)
        len_period = int(period * fs)
        len_signal = signal.shape[1]

        # Get the windowed segments
        segments = []
        start = 0
        while start + len_window < len_signal:
            segments.append([start, start + len_window])
            start += len_period

        segments.append([start, len_signal - 1])
        embeds = []

        with torch.no_grad():
            for i, j in segments:
                signal_seg = signal[:, i:j]
                seg_embed = self.embed_model.encode_batch(signal_seg)
                embeds.append(seg_embed.squeeze(0).squeeze(0).cpu().numpy())

        embeds = np.array(embeds)
        return embeds, np.array(segments)

    def recording_embeds(self, signal, fs, speech_ts):
        """
        Takes signal and VAD output (speech_ts) and produces windowed embeddings

        returns: embeddings, segment info
        """
        all_embeds = []
        all_segments = []

        for utt in speech_ts:
            start = utt["start"]
            end = utt["end"]

            utt_signal = signal[:, start:end]
            utt_embeds, utt_segments = self.windowed_embeds(
                utt_signal, fs, self.window, self.period
            )
            all_embeds.append(utt_embeds)
            all_segments.append(utt_segments + start)

        all_embeds = np.concatenate(all_embeds, axis=0)
        all_segments = np.concatenate(all_segments, axis=0)
        return all_embeds, all_segments

    @staticmethod
    def join_segments(cluster_labels, segments, tolerance=5):
        """
        Joins up same speaker segments, resolves overlap conflicts

        Uses the midpoint for overlap conflicts
        tolerance allows for very minimally separated segments to be combined
        (in samples)
        """
        assert len(cluster_labels) == len(segments)

        new_segments = [
            {"start": segments[0][0], "end": segments[0][1], "label": cluster_labels[0]}
        ]

        for l, seg in zip(cluster_labels[1:], segments[1:]):
            start = seg[0]
            end = seg[1]

            protoseg = {"start": seg[0], "end": seg[1], "label": l}

            if start <= new_segments[-1]["end"]:
                # If segments overlap
                if l == new_segments[-1]["label"]:
                    # If overlapping segment has same label
                    new_segments[-1]["end"] = end
                else:
                    # If overlapping segment has diff label
                    # Resolve by setting new start to midpoint
                    # And setting last segment end to midpoint
                    overlap = new_segments[-1]["end"] - start
                    midpoint = start + overlap // 2
                    new_segments[-1]["end"] = midpoint
                    protoseg["start"] = midpoint
                    new_segments.append(protoseg)
            else:
                # If there's no overlap just append
                new_segments.append(protoseg)

        return new_segments

    @staticmethod
    def make_output_seconds(cleaned_segments, fs):
        """
        Convert cleaned segments to readable format in seconds
        """
        for seg in cleaned_segments:
            seg["start_sample"] = seg["start"]
            seg["end_sample"] = seg["end"]
            seg["start"] = seg["start"] / fs
            seg["end"] = seg["end"] / fs
        return cleaned_segments

    def diarize(
            self,
            wav_file,
            num_speakers=2,
            threshold=None,
            silence_tolerance=0.2,
            enhance_sim=True,
            extra_info=False,
            outfile=None,
    ):
        """
        Diarize a 16khz mono wav file, produces list of segments

            Inputs:
                wav_file (path): Path to input audio file
                num_speakers (int) or NoneType: Number of speakers to cluster to
                threshold (float) or NoneType: Threshold to cluster to if
                                                num_speakers is not defined
                silence_tolerance (float): Same speaker segments which are close enough together
                                            by silence_tolerance will be joined into a single segment
                enhance_sim (bool): Whether or not to perform affinity matrix enhancement
                                    during spectral clustering
                                    If self.cluster_method is 'ahc' this option does nothing.
                extra_info (bool): Whether or not to return the embeddings and raw segments
                                    in addition to segments
                outfile (path): If specified will output an RTTM file

            Outputs:
                If extra_info is False:
                    segments (list): List of dicts with segment information
                              {
                                'start': Start time of segment in seconds,
                                'start_sample': Starting index of segment,
                                'end': End time of segment in seconds,
                                'end_sample' Ending index of segment,
                                'label': Cluster label of segment
                              }
                If extra_info is True:
                    dict: { 'segments': segments (list): List of dicts with segment information
                                                {
                                                    'start': Start time of segment in seconds,
                                                    'start_sample': Starting index of segment,
                                                    'end': End time of segment in seconds,
                                                    'end_sample' Ending index of segment,
                                                    'label': Cluster label of segment
                                                },
                            'embeds': embeddings (np.array): Array of embeddings, each row corresponds to a segment,
                            'segments': segments (list): indexes for start and end frame for each embed in embeds,
                            'cluster_labels': cluster_labels (list): cluster label for each embed in embeds
                            }

        Uses AHC/SC to cluster
        """

        signal, fs = torchaudio.load(wav_file)
        if len(signal) == 2:
            signal = signal[:1, :]
        if fs != 16000:
            signal = torchaudio.functional.resample(signal, fs, 16000)
            fs = 16000

        speech_ts = self.vad(signal[0])
        if len(speech_ts) >= 1:

            embeds, segments = self.recording_embeds(signal, fs, speech_ts)
            if len(embeds) > 1:
                cluster_labels = self.cluster(
                    embeds,
                    n_clusters=num_speakers,
                    threshold=threshold,
                    enhance_sim=enhance_sim,
                )
            else:
                cluster_labels = np.zeros(len(embeds), dtype=int)
            cleaned_segments = self.join_segments(cluster_labels, segments)
            cleaned_segments = self.make_output_seconds(cleaned_segments, fs)
            cleaned_segments = self.join_samespeaker_segments(
                cleaned_segments, silence_tolerance=silence_tolerance
            )
            if outfile:
                self.rttm_output(cleaned_segments, splitext(basename(wav_file))[0], outfile=outfile)

            if not extra_info:
                return cleaned_segments
            else:
                return {"clean_segments": cleaned_segments,
                        "embeds": embeds,
                        "segments": segments,
                        "cluster_labels": cluster_labels}
        else:
            print("Couldn't find any speech during VAD")
            return {}

    @staticmethod
    def rttm_output(segments, recname, outfile=None):
        assert outfile, "Please specify an outfile"
        rttm_line = "SPEAKER {} 0 {} {} <NA> <NA> {} <NA> <NA>\n"
        with open(outfile, "w") as fp:
            for seg in segments:
                start = seg["start"]
                offset = seg["end"] - seg["start"]
                label = seg["label"]
                line = rttm_line.format(recname, start, offset, label)
                fp.write(line)

    @staticmethod
    def join_samespeaker_segments(segments, silence_tolerance=0.5):
        """
        Join up segments that belong to the same speaker,
        even if there is a duration of silence in between them.

        If the silence is greater than silence_tolerance, does not join up
        """
        new_segments = [segments[0]]

        for seg in segments[1:]:
            if seg["label"] == new_segments[-1]["label"]:
                if new_segments[-1]["end"] + silence_tolerance >= seg["start"]:
                    new_segments[-1]["end"] = seg["end"]
                    new_segments[-1]["end_sample"] = seg["end_sample"]
                else:
                    new_segments.append(seg)
            else:
                new_segments.append(seg)
        return new_segments

    @staticmethod
    def match_diarization_to_transcript(segments, text_segments):
        """
        Match the output of .diarize to word segments
        """

        text_starts, text_ends, text_segs = [], [], []
        for s in text_segments:
            text_starts.append(s["start"])
            text_ends.append(s["end"])
            text_segs.append(s["text"])

        text_starts = np.array(text_starts)
        text_ends = np.array(text_ends)
        text_segs = np.array(text_segs)

        # Get the earliest start from either diar output or asr output
        earliest_start = np.min([text_starts[0], segments[0]["start"]])

        worded_segments = segments.copy()
        worded_segments[0]["start"] = earliest_start
        cutoffs = []

        for seg in worded_segments:
            end_idx = np.searchsorted(text_ends, seg["end"], side="left") - 1
            cutoffs.append(end_idx)

        indexes = [[0, cutoffs[0]]]
        for c in cutoffs[1:]:
            indexes.append([indexes[-1][-1], c])

        indexes[-1][-1] = len(text_segs)

        final_segments = []

        for i, seg in enumerate(worded_segments):
            s_idx, e_idx = indexes[i]
            words = text_segs[s_idx:e_idx]
            newseg = deepcopy(seg)
            newseg["words"] = " ".join(words)
            final_segments.append(newseg)

        return final_segments

    def match_diarization_to_transcript_ctm(self, segments, ctm_file):
        """
        Match the output of .diarize to a ctm file produced by asr
        """
        ctm_df = pd.read_csv(
            ctm_file,
            delimiter=" ",
            names=["utt", "channel", "start", "offset", "word", "confidence"],
        )
        ctm_df["end"] = ctm_df["start"] + ctm_df["offset"]

        starts = ctm_df["start"].values
        ends = ctm_df["end"].values
        words = ctm_df["word"].values

        # Get the earliest start from either diar output or asr output
        earliest_start = np.min([ctm_df["start"].values[0], segments[0]["start"]])

        worded_segments = self.join_samespeaker_segments(segments)
        worded_segments[0]["start"] = earliest_start
        cutoffs = []

        for seg in worded_segments:
            end_idx = np.searchsorted(ctm_df["end"].values, seg["end"], side="left") - 1
            cutoffs.append(end_idx)

        indexes = [[0, cutoffs[0]]]
        for c in cutoffs[1:]:
            indexes.append([indexes[-1][-1], c])

        indexes[-1][-1] = len(words)

        final_segments = []

        for i, seg in enumerate(worded_segments):
            s_idx, e_idx = indexes[i]
            words = ctm_df["word"].values[s_idx:e_idx]
            seg["words"] = " ".join(words)
            if len(words) >= 1:
                final_segments.append(seg)
            else:
                print(
                    "Removed segment between {} and {} as no words were matched".format(
                        seg["start"], seg["end"]
                    )
                )

        return final_segments

    @staticmethod
    def nice_text_output(worded_segments, outfile):
        with open(outfile, "w") as fp:
            for seg in worded_segments:
                fp.write(
                    "[{} to {}] Speaker {}: \n".format(
                        round(seg["start"], 2), round(seg["end"], 2), seg["label"]
                    )
                )
                fp.write("{}\n\n".format(seg["words"]))


class DiarizationPipeline:
    def __init__(self, device=None):
        super(DiarizationPipeline, self).__init__()
        self.diar = Diarizer(
            device=device,
            embed_model='ecapa',  # supported types: ['xvec', 'ecapa']
            cluster_method='ahc',  # supported types: ['ahc', 'sc']
            window=1,  # size of window to extract embeddings (in seconds)
            period=0.1  # hop of window (in seconds)
        )

    def save_speaker_audios(self, segments: list, audio_path: str):
        """

        :param segments: result diarization timestamps
        :param audio_path:
        :return: out_wav_paths: list of audio paths
        """
        signal, sr = librosa.load(audio_path, sr=None, mono=True)
        out_wav_paths = []

        segments = pd.DataFrame(segments)
        segments = self.filter_small_speech(segments)

        sort_labels = segments.groupby(['label'])['duration'].sum().nlargest(len(set(segments.label))).index

        for indx, label in enumerate(sort_labels):
            temp_df = segments[segments.label == label]
            output_signal = []
            for _, r in temp_df.iterrows():
                start = int(r["start"] * sr)
                end = int(r["end"] * sr)
                output_signal.append(signal[start:end])
            out_wav_path = audio_path.replace('.wav', f'_{indx}.wav')
            sf.write(out_wav_path, np.concatenate(output_signal), sr)
            out_wav_paths.append(out_wav_path)

        return out_wav_paths

    def filter_small_speech(self, segments):
        segments['duration'] = segments.end - segments.start
        durs = segments.groupby('label').sum()
        labels = durs[durs['duration'] / durs.sum()['duration'] > 0.015].index
        return segments[segments.label.isin(labels)]

    def __call__(self, input_wav_path: str)-> dict:

        segments = self.diar.diarize(input_wav_path,
                                     num_speakers=None,
                                     threshold=9e-1, )
        if segments != {}:
            output_wav_paths = self.save_speaker_audios(segments, input_wav_path)
            return {'count_speakers': max([i['label'] for i in segments]) + 1, 'diarization_segments': segments,
                    'output_diar_audio_paths': output_wav_paths}
        else:
            return {}


if __name__ == '__main__':
    diarization = DiarizationPipeline(device='cuda:0')

    diarization('../dialog.mp3')