File size: 36,810 Bytes
e5db578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 66,
   "id": "4121c69d-771c-4296-b336-402871727af1",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pdfplumber\n",
    "import re\n",
    "from langchain_groq import ChatGroq"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "id": "266d57e3-ab44-44d2-a3bc-a1574b5189e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = ChatGroq(\n",
    "    temperature=0, \n",
    "    groq_api_key='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', \n",
    "    model_name=\"llama-3.1-70b-versatile\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "id": "c0967c38-3fab-4588-b5aa-d97e65697a03",
   "metadata": {},
   "outputs": [],
   "source": [
    "def extract_text_from_pdf(pdf_path):\n",
    "    with pdfplumber.open(pdf_path) as pdf:\n",
    "        pages = [page.extract_text() for page in pdf.pages]\n",
    "    all_text = \"\\n\".join(pages) if pages else \"\"\n",
    "    # print(all_text)\n",
    "    return all_text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "id": "11105d9a-c009-48f0-a6ca-e59eb8378497",
   "metadata": {},
   "outputs": [],
   "source": [
    "pdf_path = \"C:/Users/Admin/Downloads/Mandar_Bhalerao_IISc.pdf\"\n",
    "pdf_data = extract_text_from_pdf(pdf_path)\n",
    "# output_path = process_resume(pdf_path)\n",
    "# print(f\"Cold email prompt saved at: {output_path}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "id": "0ae61bb3-d123-4513-bd5c-cb970c68c2f3",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.prompts import PromptTemplate\n",
    "# (NO PREAMBLE) means dont give that initial text like Here is your response.\n",
    "prompt_extract = PromptTemplate.from_template(\n",
    "        \"\"\"\n",
    "        ### PDF DATA OBTAINED FROM RESUME:\n",
    "        {pdf_data}\n",
    "        ### INSTRUCTION:\n",
    "        The data is from the resume of a person.\n",
    "        Your job is to extract all the details of this person and return them in JSON format containing the \n",
    "        following keys: `name`, `education`, `experience`, `projects`,`skills`, and `achievements`.\n",
    "        Only return the valid JSON.\n",
    "        ### VALID JSON (NO PREAMBLE):    \n",
    "        \"\"\"\n",
    ")\n",
    "\n",
    " # Your job is to extract the job postings and return them in JSON format containing the \n",
    " #        following keys: `role`, `experience`, `skills` and `description`.\n",
    "\n",
    "\n",
    " #        \"name\": name,\n",
    " #        \"education\": education,\n",
    " #        \"experience\": experience,\n",
    " #        \"projects\": projects,\n",
    " #        \"skills\": skills,\n",
    " #        \"achievements\": achievements\n",
    "\n",
    "\n",
    "# def generate_cold_email(details):\n",
    "#     return f\"\"\"\n",
    "# You are {details['name']}, a graduate from {details['education']}. Your professional experience includes {details['experience']}. You have led projects such as {details['projects']} and are skilled in {details['skills']}. You have also achieved {details['achievements']}.\n",
    "\n",
    "# Your task is to write a cold email to a potential employer or client, showcasing your skills and experiences detailed above. Mention your hands-on experience with technologies and how you can contribute to solving real-world problems.\n",
    "\n",
    "# Remember, you are {details['name']}, ready to make a significant impact in your new role.\n",
    "#     \"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "id": "f533ce30-9101-40a8-9159-3a6a4dd7ea2e",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain_extract = prompt_extract | llm    # this will form a langchain chain ie you are getting a prompt and passing it to LLM \n",
    "res = chain_extract.invoke(input={'pdf_data':pdf_data})\n",
    "# print(res.content)\n",
    "\n",
    "# we got the json format of the job description"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "id": "947778e8-e430-4afc-96ce-2e91765c8bc5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "str"
      ]
     },
     "execution_count": 75,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "type(res.content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "id": "fc69353b-ec60-445c-be0f-af4fc71e0cf8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4805"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(res.content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "id": "d3b88673-4f06-40a2-aad6-c2eea7d1e392",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.output_parsers import JsonOutputParser\n",
    "\n",
    "json_parser = JsonOutputParser()\n",
    "json_res = json_parser.parse(res.content)\n",
    "# json_res"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "id": "a47aa45b-8148-410a-9a0a-420c8ccd771c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict"
      ]
     },
     "execution_count": 78,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "type(json_res)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "id": "64841177-feaa-4bd3-af09-d90b7656f620",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # so whenever there is a job posting, we will extract this skills from the job \n",
    "# # and we will match it with one or multiple of these technologies mentioned in the csv file and it will retrive those portfolio urls\n",
    "# # which we will use while writing an email\n",
    "\n",
    "# import pandas as pd\n",
    "\n",
    "# df = pd.read_csv(\"my_portfolio.csv\")\n",
    "# # df\n",
    "\n",
    "\n",
    "# import uuid\n",
    "# import chromadb\n",
    "\n",
    "# # when you use Client, it will create a chromadb in memory\n",
    "# # but when we use PersistentClient it will create a chromadb on a disk ie it will be stored in our current folder so that we can retrive it anytime\n",
    "# client = chromadb.PersistentClient('vectorstore')\n",
    "# collection = client.get_or_create_collection(name=\"portfolio\")\n",
    "\n",
    "\n",
    "# if not collection.count():     # this means if collection does not have any count ie if it is being created for the first time\n",
    "#     for _, row in df.iterrows():    # then you iterate through all your dataframe rows, and for each row, you are adding a document\n",
    "#         collection.add(documents=row[\"Techstack\"],\n",
    "#                        metadatas={\"links\": row[\"Links\"]},\n",
    "#                        ids=[str(uuid.uuid4())])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "id": "f226adee-9126-42f8-a158-b87c8b991905",
   "metadata": {},
   "outputs": [],
   "source": [
    "job = json_res"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "id": "632eba44-054f-4c2b-803a-8e6c6f9f7232",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'name': 'Mandar Bhalerao',\n",
       " 'education': [{'institution': 'Indian Institute of Science',\n",
       "   'degree': 'Master of Technology - Computer Science and Automation',\n",
       "   'cgpa': '7.30/10.0',\n",
       "   'duration': 'Aug 2023 – Jul 2025',\n",
       "   'location': 'Bangalore, Karnataka'},\n",
       "  {'institution': 'P.E.S. Modern College of Engineering',\n",
       "   'degree': 'Bachelor of Engineering - Computer Engineering',\n",
       "   'cgpa': '9.34/10.0',\n",
       "   'duration': 'Aug 2019 – Jul 2023',\n",
       "   'location': 'Pune, Maharashtra'}],\n",
       " 'experience': [{'company': 'NeuroPixel.AI',\n",
       "   'position': 'Deep Learning Research Intern',\n",
       "   'duration': 'May 2024 – July 2024',\n",
       "   'achievements': ['Worked on optimization of Stable Diffusion models to improve performance, achieving significant efficiency gains.',\n",
       "    'Implemented the Hyper-SD framework to enhance image synthesis efficiency by Knowledge Distillation techniques.',\n",
       "    'Combined the advantages of Trajectory Preserving and Reformulation Distillation techniques for faster inference.',\n",
       "    'Trained a Control Net for SDXL, resulting in a 30% improvement of the inference steps from the base SDXL model.']},\n",
       "  {'company': 'Western Union',\n",
       "   'position': 'Software Intern',\n",
       "   'duration': 'Jan 2023 – Jun 2023',\n",
       "   'achievements': ['Engaged with Quantum Metric to enrich powerful UX analysis, streamlining user experience design and functionality.',\n",
       "    'Analyzed global transaction data, identified bugs, and implementing solutions that boosted conversion rates by 10%.']},\n",
       "  {'company': 'Amazon Web Services',\n",
       "   'position': 'Intern',\n",
       "   'duration': 'Oct 2021 – Dec 2021',\n",
       "   'achievements': ['Acquired foundational skills in AWS, utilizing essential tools and services to support scalable cloud architectures.',\n",
       "    'Completed the Solutions Architect Project and gained insights about the need of Cloud and AWS in today’s world.']}],\n",
       " 'projects': [{'name': 'Gurgaon Real Estate Price Prediction',\n",
       "   'technologies': 'Machine Learning, AWS',\n",
       "   'achievements': ['Conducted data preprocessing, feature engineering, and performed EDA to optimize model performance.',\n",
       "    'Experimented different models including Linear Regression, Decision Tree, Random Forest, XGBoost etc.',\n",
       "    'Achieved a best R² score of 0.90 and a Mean Absolute Error (MAE) of 44 lakhs with the RandomForest model.',\n",
       "    'Created a Geo-map for sectors in Gurgaon with color-coded pricing making it easy for the user to select property.',\n",
       "    'Developed a dual-layer recommendation system to boost user engagement by suggesting top 5 properties to the user.',\n",
       "    'Deployed the modules using Streamlit and AWS, enabling real-time access and interactive analytics for end-users.']},\n",
       "  {'name': 'Optimizing Performance of Dilated Convolution',\n",
       "   'technologies': 'C++, CUDA',\n",
       "   'achievements': ['Implemented different optimization methods to reduce the overall time required for Dialated Convolution.',\n",
       "    'Optimized it using single threading and achieved a maximum improvement of 85.77%.',\n",
       "    'Achieved a maximum improvement of 96% through multi-threading by changing the number of threads.',\n",
       "    'Implemented it for a GPU using CUDA resulting in the speedup of 600.47 and improvement of 99.83%.']},\n",
       "  {'name': 'Movie Recommendation System',\n",
       "   'technologies': 'Python',\n",
       "   'achievements': ['Created an end to end Machine Learning project using Streamlit framework in Python and movies dataset from Kaggle.',\n",
       "    'Developed a Content based Recommendation System using cosine similarity to analyze similarities among 5000 movies.',\n",
       "    'Successfully deployed the application on Streamlit Community Cloud, enabling real-time user interactions and feedback.']}],\n",
       " 'skills': {'languages': ['Python', 'C++'],\n",
       "  'developerTools': ['VS Code', 'Jupyter Notebook', 'Google Colab'],\n",
       "  'technical': ['Neural Networks',\n",
       "   'Machine Learning',\n",
       "   'Deep Learning',\n",
       "   'Gen AI',\n",
       "   'Natural Language Processing (NLP)']},\n",
       " 'achievements': [{'position': 'Teaching Assistant',\n",
       "   'course': 'UENG-101 Algorithms and Programming',\n",
       "   'professors': ['Prof. Y.Narahari', 'Prof. Viraj Kumar']},\n",
       "  {'position': 'First Position',\n",
       "   'competition': 'Chase The Py By CODEFIESTA 2022'},\n",
       "  {'position': 'Global Rank of 157',\n",
       "   'competition': 'February Long Challenge at Codechef'},\n",
       "  {'position': 'Gold badges',\n",
       "   'domains': ['Python', 'C++', 'Problem Solving Domain'],\n",
       "   'platform': 'HackerRank'}]}"
      ]
     },
     "execution_count": 81,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "job"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "id": "25ab0c96-8800-4102-8973-cbf42e68a11d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# def generate_cold_email(details):\n",
    "#     # Extract name\n",
    "#     name = details.get('name', 'Candidate')\n",
    "\n",
    "#     # Extract education details\n",
    "#     education_list = details.get('education', [])\n",
    "#     if education_list:\n",
    "#         education_details = ', '.join([f\"{edu.get('degree', 'Unknown degree')} from {edu.get('institution', 'Unknown institution')} ({edu.get('duration', 'Unknown duration')})\" for edu in education_list])\n",
    "#     else:\n",
    "#         education_details = 'No education details provided'\n",
    "\n",
    "#     # Extract skills details\n",
    "#     skills_list = details.get('skills', [])\n",
    "#     if skills_list:\n",
    "#         skills_details = ', '.join([', '.join(skill.get('tools', [])) for skill in skills_list])\n",
    "#     else:\n",
    "#         skills_details = 'No skills listed'\n",
    "\n",
    "#     # Extract experience details\n",
    "#     experience_list = details.get('experience', [])\n",
    "#     if experience_list:\n",
    "#         experience_details = ', '.join([f\"{exp.get('position', 'Unknown position')} at {exp.get('company', 'Unknown company')} ({exp.get('duration', 'Unknown duration')})\" for exp in experience_list])\n",
    "#     else:\n",
    "#         experience_details = 'No experience provided'\n",
    "\n",
    "#     # Extract project details\n",
    "#     project_list = details.get('projects', [])\n",
    "#     if project_list:\n",
    "#         project_details = ', '.join([project.get('name', 'Unknown project') for project in project_list])\n",
    "#     else:\n",
    "#         project_details = 'No projects listed'\n",
    "\n",
    "#     # Extract achievements details\n",
    "#     achievement_list = details.get('achievements', [])\n",
    "#     if achievement_list:\n",
    "#         achievement_details = ', '.join([f\"{achieve.get('position', 'Unknown position')} - {achieve.get('description', 'Unknown achievement')}\" for achieve in achievement_list])\n",
    "#     else:\n",
    "#         achievement_details = 'No achievements listed'\n",
    "\n",
    "#     email_prompt = f\"\"\"\n",
    "#     You are {name}, educated at {education_details}. Your skills include {skills_details}.\n",
    "    \n",
    "#     You have experience as {experience_details}.\n",
    "    \n",
    "#     Some of your key projects include {project_details}.\n",
    "    \n",
    "#     Additionally, your achievements include {achievement_details}.\n",
    "    \n",
    "#     Write a cold email to a potential employer or client, showcasing your skills, education, projects, and achievements. Explain how your background makes you an ideal candidate for their needs.\n",
    "\n",
    "#     Remember, you are {name}, ready to make a significant impact in your new role.\n",
    "#     \"\"\"\n",
    "#     return email_prompt\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "id": "102afc75-d182-4724-8261-6ff02c450f39",
   "metadata": {},
   "outputs": [],
   "source": [
    "# generate_cold_email(job)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "id": "1513b4bf-a92b-4483-babd-7aa37ddb74c4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# def generate_cold_email(details):\n",
    "#     # Extract name\n",
    "#     name = details.get('name', 'Candidate')\n",
    "\n",
    "#     # Extract education details\n",
    "#     education_list = details.get('education', [])\n",
    "#     if education_list:\n",
    "#         education_details = ', '.join([f\"{edu.get('degree', 'Unknown degree')} from {edu.get('institution', 'Unknown institution')} ({edu.get('duration', 'Unknown duration')})\" for edu in education_list])\n",
    "#     else:\n",
    "#         education_details = 'No education details provided'\n",
    "\n",
    "#     # Extract skills details\n",
    "#     skills_list = details.get('skills', [])\n",
    "#     if skills_list:\n",
    "#         skills_details = ', '.join([', '.join(skill.get('tools', [])) for skill in skills_list])\n",
    "#     else:\n",
    "#         skills_details = 'No skills listed'\n",
    "\n",
    "#     # Extract experience details\n",
    "#     experience_list = details.get('experience', [])\n",
    "#     if experience_list:\n",
    "#         experience_details = []\n",
    "#         for exp in experience_list:\n",
    "#             position = exp.get('position', 'Unknown position')\n",
    "#             company = exp.get('company', 'Unknown company')\n",
    "#             duration = exp.get('duration', 'Unknown duration')\n",
    "#             achievements = exp.get('achievements', [])\n",
    "#             achievements_details = ', '.join(achievements) if achievements else 'No achievements mentioned'\n",
    "#             experience_details.append(f\"{position} at {company} ({duration}): {achievements_details}\")\n",
    "#         experience_details = ', '.join(experience_details)\n",
    "#     else:\n",
    "#         experience_details = 'No experience provided'\n",
    "\n",
    "#     # Extract project details\n",
    "#     project_list = details.get('projects', [])\n",
    "#     if project_list:\n",
    "#         project_details = ', '.join([project.get('name', 'Unknown project') for project in project_list])\n",
    "#     else:\n",
    "#         project_details = 'No projects listed'\n",
    "\n",
    "#     # Extract achievements details\n",
    "#     achievement_list = details.get('achievements', [])\n",
    "#     if achievement_list:\n",
    "#         achievement_details = ', '.join([f\"{achieve.get('position', 'Unknown position')} - {achieve.get('description', 'Unknown achievement')}\" for achieve in achievement_list])\n",
    "#     else:\n",
    "#         achievement_details = 'No achievements listed'\n",
    "\n",
    "#     email_prompt = f\"\"\"\n",
    "#     You are {name}, educated at {education_details}. Your skills include {skills_details}.\n",
    "    \n",
    "#     You have experience as {experience_details}.\n",
    "    \n",
    "#     Some of your key projects include {project_details}.\n",
    "    \n",
    "#     Additionally, your achievements include {achievement_details}.\n",
    "    \n",
    "#     Write a cold email to a potential employer or client, showcasing your skills, education, experience (including responsibilities and achievements), projects, and achievements. Explain how your background makes you an ideal candidate for their needs.\n",
    "\n",
    "#     Remember, you are {name}, ready to make a significant impact in your new role.\n",
    "#     \"\"\"\n",
    "#     return email_prompt\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "id": "8c13b01b-1715-452e-ba64-22ab7aac92ce",
   "metadata": {},
   "outputs": [],
   "source": [
    "# generate_cold_email(job)\n",
    "# "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 87,
   "id": "afc38bb5-0aef-491f-ae17-ef665e89544a",
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate_cold_email(details):\n",
    "    # Extract name\n",
    "    name = details.get('name', 'Candidate')\n",
    "\n",
    "    # Extract education details\n",
    "    education_list = details.get('education', [])\n",
    "    if education_list:\n",
    "        education_details = ', '.join([f\"{edu.get('degree', 'Unknown degree')} from {edu.get('institution', 'Unknown institution')} ({edu.get('duration', 'Unknown duration')})\" for edu in education_list])\n",
    "    else:\n",
    "        education_details = 'No education details provided'\n",
    "\n",
    "    # Extract skills details\n",
    "    skills_list = details.get('skills', [])\n",
    "    if skills_list:\n",
    "        skills_details = ', '.join([', '.join(skill.get('tools', [])) for skill in skills_list])\n",
    "    else:\n",
    "        skills_details = 'No skills listed'\n",
    "\n",
    "    # Extract experience details\n",
    "    experience_list = details.get('experience', [])\n",
    "    if experience_list:\n",
    "        experience_details = []\n",
    "        for exp in experience_list:\n",
    "            position = exp.get('position', 'Unknown position')\n",
    "            company = exp.get('company', 'Unknown company')\n",
    "            duration = exp.get('duration', 'Unknown duration')\n",
    "            achievements = exp.get('achievements', [])\n",
    "            achievements_details = ', '.join(achievements) if achievements else 'No achievements mentioned'\n",
    "            experience_details.append(f\"{position} at {company} ({duration}): {achievements_details}\")\n",
    "        experience_details = ', '.join(experience_details)\n",
    "    else:\n",
    "        experience_details = 'No experience provided'\n",
    "\n",
    "    # Extract project details\n",
    "    project_list = details.get('projects', [])\n",
    "    if project_list:\n",
    "        project_details = []\n",
    "        for project in project_list:\n",
    "            project_name = project.get('name', 'Unknown project')\n",
    "            project_description = ', '.join(project.get('description', [])) if project.get('description') else 'No details provided'\n",
    "            project_details.append(f\"{project_name}: {project_description}\")\n",
    "        project_details = ', '.join(project_details)\n",
    "    else:\n",
    "        project_details = 'No projects listed'\n",
    "\n",
    "    # Extract achievements details\n",
    "    achievement_list = details.get('achievements', [])\n",
    "    if achievement_list:\n",
    "        achievement_details = ', '.join([f\"{achieve.get('position', 'Unknown position')} - {achieve.get('description', 'Unknown achievement')}\" for achieve in achievement_list])\n",
    "    else:\n",
    "        achievement_details = 'No achievements listed'\n",
    "\n",
    "    email_prompt = f\"\"\"\n",
    "    You are {name}, educated at {education_details}. Your skills include {skills_details}.\n",
    "    \n",
    "    You have experience as {experience_details}.\n",
    "    \n",
    "    Some of your key projects include {project_details}.\n",
    "    \n",
    "    Additionally, your achievements include {achievement_details}.\n",
    "    \n",
    "    Write a cold email to a potential employer or client, showcasing your skills, education, experience (including responsibilities and achievements), projects (with descriptions), and achievements. Explain how your background makes you an ideal candidate for their needs.\n",
    "\n",
    "    Remember, you are {name}, ready to make a significant impact in your new role.\n",
    "    \"\"\"\n",
    "    return email_prompt\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "id": "8c4555f3-f98c-4951-9c40-81a2c779206c",
   "metadata": {},
   "outputs": [
    {
     "ename": "AttributeError",
     "evalue": "'str' object has no attribute 'get'",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[89], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mgenerate_cold_email\u001b[49m\u001b[43m(\u001b[49m\u001b[43mjob\u001b[49m\u001b[43m)\u001b[49m\n",
      "Cell \u001b[1;32mIn[87], line 15\u001b[0m, in \u001b[0;36mgenerate_cold_email\u001b[1;34m(details)\u001b[0m\n\u001b[0;32m     13\u001b[0m skills_list \u001b[38;5;241m=\u001b[39m details\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mskills\u001b[39m\u001b[38;5;124m'\u001b[39m, [])\n\u001b[0;32m     14\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m skills_list:\n\u001b[1;32m---> 15\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(skill\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtools\u001b[39m\u001b[38;5;124m'\u001b[39m, [])) \u001b[38;5;28;01mfor\u001b[39;00m skill \u001b[38;5;129;01min\u001b[39;00m skills_list])\n\u001b[0;32m     16\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m     17\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNo skills listed\u001b[39m\u001b[38;5;124m'\u001b[39m\n",
      "Cell \u001b[1;32mIn[87], line 15\u001b[0m, in \u001b[0;36m<listcomp>\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m     13\u001b[0m skills_list \u001b[38;5;241m=\u001b[39m details\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mskills\u001b[39m\u001b[38;5;124m'\u001b[39m, [])\n\u001b[0;32m     14\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m skills_list:\n\u001b[1;32m---> 15\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[43mskill\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtools\u001b[39m\u001b[38;5;124m'\u001b[39m, [])) \u001b[38;5;28;01mfor\u001b[39;00m skill \u001b[38;5;129;01min\u001b[39;00m skills_list])\n\u001b[0;32m     16\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m     17\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNo skills listed\u001b[39m\u001b[38;5;124m'\u001b[39m\n",
      "\u001b[1;31mAttributeError\u001b[0m: 'str' object has no attribute 'get'"
     ]
    }
   ],
   "source": [
    "generate_cold_email(job)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "id": "010e4425-8b74-4052-8a72-5c3bb0614847",
   "metadata": {},
   "outputs": [
    {
     "ename": "AttributeError",
     "evalue": "'str' object has no attribute 'get'",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[88], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m resume_details \u001b[38;5;241m=\u001b[39m \u001b[43mgenerate_cold_email\u001b[49m\u001b[43m(\u001b[49m\u001b[43mjob\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m      2\u001b[0m \u001b[38;5;28mtype\u001b[39m(resume_details)\n",
      "Cell \u001b[1;32mIn[87], line 15\u001b[0m, in \u001b[0;36mgenerate_cold_email\u001b[1;34m(details)\u001b[0m\n\u001b[0;32m     13\u001b[0m skills_list \u001b[38;5;241m=\u001b[39m details\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mskills\u001b[39m\u001b[38;5;124m'\u001b[39m, [])\n\u001b[0;32m     14\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m skills_list:\n\u001b[1;32m---> 15\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(skill\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtools\u001b[39m\u001b[38;5;124m'\u001b[39m, [])) \u001b[38;5;28;01mfor\u001b[39;00m skill \u001b[38;5;129;01min\u001b[39;00m skills_list])\n\u001b[0;32m     16\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m     17\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNo skills listed\u001b[39m\u001b[38;5;124m'\u001b[39m\n",
      "Cell \u001b[1;32mIn[87], line 15\u001b[0m, in \u001b[0;36m<listcomp>\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m     13\u001b[0m skills_list \u001b[38;5;241m=\u001b[39m details\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mskills\u001b[39m\u001b[38;5;124m'\u001b[39m, [])\n\u001b[0;32m     14\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m skills_list:\n\u001b[1;32m---> 15\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[43mskill\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtools\u001b[39m\u001b[38;5;124m'\u001b[39m, [])) \u001b[38;5;28;01mfor\u001b[39;00m skill \u001b[38;5;129;01min\u001b[39;00m skills_list])\n\u001b[0;32m     16\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m     17\u001b[0m     skills_details \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNo skills listed\u001b[39m\u001b[38;5;124m'\u001b[39m\n",
      "\u001b[1;31mAttributeError\u001b[0m: 'str' object has no attribute 'get'"
     ]
    }
   ],
   "source": [
    "resume_details = generate_cold_email(job)\n",
    "type(resume_details)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "id": "be7377e8-166e-452e-966c-64df9df46462",
   "metadata": {},
   "outputs": [],
   "source": [
    "# job"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "237becf8-2351-40c4-a343-0eaf61e10230",
   "metadata": {},
   "outputs": [],
   "source": [
    "# this is prompt template for writing an email\n",
    "\n",
    "prompt_email = PromptTemplate.from_template(\n",
    "        \"\"\"\n",
    "        ### JOB DESCRIPTION:\n",
    "        {job_description}\n",
    "\n",
    "        ### INSTRUCTION:\n",
    "        Introduce yourself from the below details\n",
    "        {resume_details}\n",
    "        End the email with Name and Designation. \n",
    "        Do not provide a preamble.\n",
    "        ### EMAIL (NO PREAMBLE):\n",
    "\n",
    "        \"\"\"\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "id": "0833b02e-dc85-4595-86c5-c69096fc1a2b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Subject: Expertise in AI, Machine Learning, and Deep Learning for Innovative Solutions\n",
      "\n",
      "Dear Hiring Manager,\n",
      "\n",
      "I am Mandar Bhalerao, a highly motivated and skilled professional with a strong educational background in Computer Science and Automation. I am excited to introduce myself as a potential candidate for a role that leverages my expertise in AI, Machine Learning, and Deep Learning.\n",
      "\n",
      "With a Master of Technology degree in Computer Science and Automation from the Indian Institute of Science (Aug 2023 – Jul 2025) and a Bachelor of Engineering degree in Computer Engineering from P.E.S. Modern College of Engineering (Aug 2019 – Jul 2023), I possess a solid foundation in computer science and software development. My technical skills include proficiency in Python, C++, VS Code, Jupyter Notebook, Google Colab, Neural Networks, Machine Learning, Deep Learning, Gen AI, and Natural Language Processing (NLP).\n",
      "\n",
      "As a Deep Learning Research Intern at NeuroPixel.AI (May 2024 – July 2024), I worked on optimizing Stable Diffusion models to improve performance, achieving significant efficiency gains. I implemented the Hyper-SD framework to enhance image synthesis efficiency by Knowledge Distillation techniques and combined the advantages of Trajectory Preserving and Reformulation Distillation techniques for faster inference. I also trained a Control Net for SDXL, resulting in a 30% improvement of the inference steps from the base SDXL model.\n",
      "\n",
      "As a Software Intern at Western Union (Jan 2023 – Jun 2023), I engaged with Quantum Metric to enrich powerful UX analysis, streamlining user experience design and functionality. I analyzed global transaction data, identified bugs, and implemented solutions that boosted conversion rates by 10%. As an Intern at Amazon Web Services (Oct 2021 – Dec 2021), I acquired foundational skills in AWS, utilizing essential tools and services to support scalable cloud architectures. I completed the Solutions Architect Project and gained insights about the need of Cloud and AWS in today’s world.\n",
      "\n",
      "Some of my notable projects include:\n",
      "\n",
      "* Gurgaon Real Estate Price Prediction: I conducted data preprocessing, feature engineering, and performed EDA to optimize model performance. I experimented with different models, including Linear Regression, Decision Tree, Random Forest, XGBoost, and achieved a best R² score of 0.90 and a Mean Absolute Error (MAE) of 44 lakhs with the RandomForest model. I created a Geo-map for sectors in Gurgaon with color-coded pricing, making it easy for users to select properties. I developed a dual-layer recommendation system to boost user engagement by suggesting top 5 properties to users and deployed the modules using Streamlit and AWS.\n",
      "* Optimizing Performance of Dilated Convolution: I implemented different optimization methods to reduce the overall time required for Dialated Convolution. I optimized it using single threading and achieved a maximum improvement of 85.77%. I achieved a maximum improvement of 96% through multi-threading by changing the number of threads. I implemented it for a GPU using CUDA, resulting in a speedup of 600.47 and an improvement of 99.83%.\n",
      "* Movie Recommendation System: I created an end-to-end Machine Learning project using the Streamlit framework in Python and the movies dataset from Kaggle. I developed a Content-based Recommendation System using cosine similarity to analyze similarities among 5000 movies. I successfully deployed the application on Streamlit Community Cloud, enabling real-time user interactions and feedback.\n",
      "\n",
      "My achievements include:\n",
      "\n",
      "* Teaching Assistant for “UENG-101 Algorithms and Programming” by Prof. Y.Narahari and Prof. Viraj Kumar\n",
      "* First Position in Chase The Py By CODEFIESTA 2022\n",
      "* Global Rank of 157 in February Long Challenge at Codechef\n",
      "* Gold badges in Python, C++, and Problem Solving Domain on HackerRank\n",
      "\n",
      "With my strong educational background, technical skills, and experience in AI, Machine Learning, and Deep Learning, I am confident that I can make a significant impact in your organization. I am excited about the opportunity to discuss my qualifications further and explore how my skills align with your needs.\n",
      "\n",
      "Mandar Bhalerao\n",
      "AI/ML Engineer & Deep Learning Researcher\n"
     ]
    }
   ],
   "source": [
    "# again creating a chain of prompt_email and llm\n",
    "# invoking the chain by passing the parameter of job_description and link_list\n",
    "\n",
    "chain_email = prompt_email | llm\n",
    "res = chain_email.invoke({\"job_description\": str(job), \"resume_details\": resume_details})\n",
    "print(res.content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a0efcf9c-8936-4d7a-9a8a-0c1121f12caf",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}