File size: 1,436 Bytes
69e4ec4
 
 
 
 
 
b0d672f
 
69e4ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from typing import TextIO
import keras_cv
from translate import Translator
import matplotlib.pyplot as plt
import gradio as gr
import tensorflow as tf
#import os
#os.environ['TF_ENABLE_ONEDNN_OPTS']='0'

model = keras_cv.models.StableDiffusion(img_width=512, img_height=512)
translator = Translator(from_lang="ko", to_lang="en")


def generate_img(text:str, cnt:int) -> list:
    #์ž…๋ ฅ ๋ฐ›์€ ํ…์ŠคํŠธ๋ฅผ cnt๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ์ƒ์„ฑํ•˜์—ฌ return

    text = translator.translate(text)
    images = model.text_to_image(text, batch_size=cnt)
    return images

def plot_image(images) -> None:
    #์ž…๋ ฅ ๋ฐ›์€ ์ด๋ฏธ์ง€๋“ค์„ ์ด๋ฏธ์ง€๋กœ ์ €์žฅ
    plt.figure(figsize=(20, 20))

    for i in range(len(images)):
        ax = plt.subplot(1, len(images), i + 1)
        plt.imshow(images[i])
        plt.axis("off")
        plt.tight_layout()


    plt.savefig(f"text.png")


def inference(text:str):
    image = generate_img(text, 1).squeeze()
    return image

with gr.Blocks(theme=gr.themes.Base()) as demo:

  with gr.Row():
    with gr.Column():
      
      text=gr.Textbox(lines=5,placeholder='Prompt here',label="prompt")
      create_btn = gr.Button(value="Create")
    with gr.Column():
      output=gr.Image(shape=(200,200))
  create_btn.click(fn=inference,inputs=text,outputs=output)
  examples = gr.Examples(examples=["The rainbow car", "Ride the cloud into the night sky"],inputs=[text])
    

demo.launch(share=False)