spoggy's picture
move app to pdf_qa and create app
6f9b2cb
#from langchain.document_loaders.pdf import PDFPlumberLoader
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter
from transformers import pipeline
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI, HuggingFacePipeline
from constants import *
from transformers import AutoTokenizer
import torch
import os
import re
from pprint import pprint
class PdfQA:
def __init__(self,config:dict = {}):
self.config = config
self.embedding = None
self.vectordb = None
self.llm = None
self.qa = None
self.retriever = None
# The following class methods are useful to create global GPU model instances
# This way we don't need to reload models in an interactive app,
# and the same model instance can be used across multiple user sessions
@classmethod
def create_instructor_xl(cls):
device = "cuda" if torch.cuda.is_available() else "cpu"
return HuggingFaceInstructEmbeddings(model_name=EMB_INSTRUCTOR_XL, model_kwargs={"device": device})
@classmethod
def create_sbert_mpnet(cls):
device = "cuda" if torch.cuda.is_available() else "cpu"
return HuggingFaceEmbeddings(model_name=EMB_SBERT_MPNET_BASE, model_kwargs={"device": device})
@classmethod
def create_flan_t5_xxl(cls, load_in_8bit=False):
# Local flan-t5-xxl with 8-bit quantization for inference
# Wrap it in HF pipeline for use with LangChain
return pipeline(
task="text2text-generation",
model="google/flan-t5-xxl",
max_new_tokens=200,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_xl(cls, load_in_8bit=False):
return pipeline(
task="text2text-generation",
model="google/flan-t5-xl",
max_new_tokens=200,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_small(cls, load_in_8bit=False):
# Local flan-t5-small for inference
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_base(cls, load_in_8bit=False):
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_flan_t5_large(cls, load_in_8bit=False):
# Wrap it in HF pipeline for use with LangChain
model="google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model)
return pipeline(
task="text2text-generation",
model=model,
tokenizer = tokenizer,
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_fastchat_t5_xl(cls, load_in_8bit=False):
return pipeline(
task="text2text-generation",
model = "lmsys/fastchat-t5-3b-v1.0",
max_new_tokens=100,
model_kwargs={"device_map": "auto", "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
)
@classmethod
def create_falcon_instruct_small(cls, load_in_8bit=False):
model = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
hf_pipeline = pipeline(
task="text-generation",
model = model,
tokenizer = tokenizer,
trust_remote_code = True,
max_new_tokens=100,
model_kwargs={
"device_map": "auto",
"load_in_8bit": load_in_8bit,
"max_length": 512,
"temperature": 0.01,
"torch_dtype":torch.bfloat16,
}
)
return hf_pipeline
def init_embeddings(self) -> None:
# OpenAI ada embeddings API
if self.config["embedding"] == EMB_OPENAI_ADA:
self.embedding = OpenAIEmbeddings()
elif self.config["embedding"] == EMB_INSTRUCTOR_XL:
# Local INSTRUCTOR-XL embeddings
if self.embedding is None:
self.embedding = PdfQA.create_instructor_xl()
elif self.config["embedding"] == EMB_SBERT_MPNET_BASE:
## this is for SBERT
if self.embedding is None:
self.embedding = PdfQA.create_sbert_mpnet()
else:
self.embedding = None ## DuckDb uses sbert embeddings
# raise ValueError("Invalid config")
def init_models(self) -> None:
""" Initialize LLM models based on config """
load_in_8bit = self.config.get("load_in_8bit",False)
# OpenAI GPT 3.5 API
if self.config["llm"] == LLM_OPENAI_GPT35:
# OpenAI GPT 3.5 API
pass
elif self.config["llm"] == LLM_FLAN_T5_SMALL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_small(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_BASE:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_base(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_LARGE:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_large(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_XL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_xl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FLAN_T5_XXL:
if self.llm is None:
self.llm = PdfQA.create_flan_t5_xxl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FASTCHAT_T5_XL:
if self.llm is None:
self.llm = PdfQA.create_fastchat_t5_xl(load_in_8bit=load_in_8bit)
elif self.config["llm"] == LLM_FALCON_SMALL:
if self.llm is None:
self.llm = PdfQA.create_falcon_instruct_small(load_in_8bit=load_in_8bit)
else:
raise ValueError("Invalid config")
def vector_db_pdf(self) -> None:
"""
creates vector db for the embeddings and persists them or loads a vector db from the persist directory
"""
pdf_path = self.config.get("pdf_path",None)
persist_directory = self.config.get("persist_directory",None)
if persist_directory and os.path.exists(persist_directory):
## Load from the persist db
self.vectordb = Chroma(persist_directory=persist_directory, embedding_function=self.embedding)
elif pdf_path and os.path.exists(pdf_path):
## 1. Extract the documents
loader = PyPDFLoader(pdf_path)
documents = loader.load()
## 2. Split the texts
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10, encoding_name="cl100k_base") # This the encoding for text-embedding-ada-002
text_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=10) # This the encoding for text-embedding-ada-002
texts = text_splitter.split_documents(texts)
## 3. Create Embeddings and add to chroma store
##TODO: Validate if self.embedding is not None
self.vectordb = Chroma.from_documents(documents=texts, embedding=self.embedding, persist_directory=persist_directory)
else:
raise ValueError("NO PDF found")
def retreival_qa_chain(self):
"""
Creates retrieval qa chain using vectordb as retrivar and LLM to complete the prompt
"""
##TODO: Use custom prompt
print("one", self)
pprint(vars(self))
self.retriever = self.vectordb.as_retriever(search_kwargs={"k":3})
print("two")
if self.config["llm"] == LLM_OPENAI_GPT35:
# Use ChatGPT API
self.qa = RetrievalQA.from_chain_type(llm=OpenAI(model_name=LLM_OPENAI_GPT35, temperature=0.), chain_type="stuff",\
retriever=self.vectordb.as_retriever(search_kwargs={"k":3}))
else:
hf_llm = HuggingFacePipeline(pipeline=self.llm,model_id=self.config["llm"])
self.qa = RetrievalQA.from_chain_type(llm=hf_llm, chain_type="stuff",retriever=self.retriever)
if self.config["llm"] == LLM_FLAN_T5_SMALL or self.config["llm"] == LLM_FLAN_T5_BASE or self.config["llm"] == LLM_FLAN_T5_LARGE:
question_t5_template = """
context: {context}
question: {question}
answer:
"""
QUESTION_T5_PROMPT = PromptTemplate(
template=question_t5_template, input_variables=["context", "question"]
)
self.qa.combine_documents_chain.llm_chain.prompt = QUESTION_T5_PROMPT
self.qa.combine_documents_chain.verbose = True
self.qa.return_source_documents = True
def answer_query(self,question:str) ->str:
"""
Answer the question
"""
answer_dict = self.qa({"query":question,})
print(answer_dict)
answer = answer_dict["result"]
if self.config["llm"] == LLM_FASTCHAT_T5_XL:
answer = self._clean_fastchat_t5_output(answer)
return answer
def _clean_fastchat_t5_output(self, answer: str) -> str:
# Remove <pad> tags, double spaces, trailing newline
answer = re.sub(r"<pad>\s+", "", answer)
answer = re.sub(r" ", " ", answer)
answer = re.sub(r"\n$", "", answer)
return answer