IanRonk commited on
Commit
e1bbde1
Β·
1 Parent(s): 35825dc

Initial commmit

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -22,6 +22,8 @@
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.keras filter=lfs diff=lfs merge=lfs -text
26
+ functions/*.keras filter=lfs diff=lfs merge=lfs -text
27
  *.safetensors filter=lfs diff=lfs merge=lfs -text
28
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.tar.* filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,12 +1,12 @@
1
  ---
2
  title: Sponsoredbye
3
- emoji: 😻
4
- colorFrom: green
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 4.31.5
8
  app_file: app.py
9
- pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Sponsoredbye
3
+ emoji: πŸ’Ž
4
+ colorFrom: blue
5
+ colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.31.4
8
  app_file: app.py
9
+ pinned: true
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
RNN_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:642ec9499996ca6dcd3c8f2874ae3c5d9ca0095064d2f8faae1f12b2fea1e020
3
+ size 3974964
__init__.py ADDED
File without changes
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os import pipe
2
+ import re
3
+ import gradio as gr
4
+ from functions.punctuation import punctuate
5
+ from functions.model_infer import predict_from_document
6
+ from functions.convert_time import match_mask_and_transcript
7
+
8
+
9
+ title = "sponsoredBye - never listen to sponsors again"
10
+ description = "Sponsored sections in videos are annoying and take up a lot of time. Improve your YouTube watching experience, by filling in the youtube url and figure out what segments to skip."
11
+ article = "Check out [the original Rick and Morty Bot](https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot) that this demo is based off of."
12
+
13
+
14
+ def pipeline(video_url):
15
+ video_id = video_url.split("?v=")[-1]
16
+ punctuated_text, transcript = punctuate(video_id)
17
+ sentences = re.split(r"[\.\!\?]\s", punctuated_text)
18
+ classification, probs = predict_from_document(sentences)
19
+ # return punctuated_text
20
+ times, timestamps = match_mask_and_transcript(sentences, transcript, classification)
21
+ return [{"begin": time[0], "end": time[1]} for time in times]
22
+ # return [
23
+ # {
24
+ # "start": "12:05",
25
+ # "end": "12:52",
26
+ # "classification": str(classification),
27
+ # "probabilities": probs,
28
+ # "times": times,
29
+ # "timestamps": timestamps,
30
+ # }
31
+ # ]
32
+
33
+
34
+ # print(pipeline("VL5M5ZihJK4"))
35
+ demo = gr.Interface(
36
+ fn=pipeline,
37
+ title=title,
38
+ description=description,
39
+ inputs="text",
40
+ # outputs=gr.Label(num_top_classes=3),
41
+ outputs="json",
42
+ examples=[
43
+ "https://www.youtube.com/watch?v=UjtOGPJ0URM",
44
+ "https://www.youtube.com/watch?v=TrZyuCh9df0",
45
+ ],
46
+ )
47
+ demo.launch(share=True)
functions/.DS_Store ADDED
Binary file (6.15 kB). View file
 
functions/RNN_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:642ec9499996ca6dcd3c8f2874ae3c5d9ca0095064d2f8faae1f12b2fea1e020
3
+ size 3974964
functions/__init__.py ADDED
File without changes
functions/convert_time.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from thefuzz import fuzz
3
+ import numpy as np
4
+
5
+
6
+ def match_mask_and_transcript(split_punct, transcript, classification):
7
+ """
8
+ Input:
9
+ split_punct: the punctuated text, split on ?/!/.\s,
10
+ transcript: original transcript with timestamps
11
+ classification: classification object (list of numbers 0,1)
12
+ Output: times
13
+ """
14
+
15
+ # Get the sponsored part
16
+ sponsored_segment = []
17
+ for i, val in enumerate(classification):
18
+ if val == 1:
19
+ sponsored_segment.append(split_punct[i])
20
+
21
+ segment = " ".join(sponsored_segment)
22
+ sim_scores = list()
23
+
24
+ # Check the similarity scores between the sponsored part and the transcript parts
25
+ for elem in transcript:
26
+ sim_scores.append(fuzz.partial_ratio(segment, elem["text"]))
27
+
28
+ # Get the scores and check if they are above mean + 2*stdev
29
+ scores = np.array(sim_scores)
30
+ timestamp_mask = (scores > np.mean(scores) + np.std(scores) * 2).astype(int)
31
+ timestamps = [
32
+ (transcript[i]["start"], transcript[i]["duration"])
33
+ for i, elem in enumerate(timestamp_mask)
34
+ if elem == 1
35
+ ]
36
+
37
+ # Get the timestamp segments
38
+ times = []
39
+ current = -1
40
+ current_time = 0
41
+ for elem in timestamps:
42
+ # Threshold of 5 to see if it is a jump to another segment (also to make sure smaller segments are added together
43
+ if elem[0] > (current_time + 15):
44
+ current += 1
45
+ times.append((elem[0], elem[0] + elem[1]))
46
+ current_time = elem[0] + elem[1]
47
+ else:
48
+ times[current] = (times[current][0], elem[0] + elem[1])
49
+ current_time = elem[0] + elem[1]
50
+
51
+ return_times = [x for x in times if (x[1] - x[0]) > 10]
52
+ return return_times, timestamps
functions/model_infer.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from keras.preprocessing.sequence import pad_sequences
2
+ import numpy as np
3
+ import re
4
+
5
+ # import tensorflow as tf
6
+ import os
7
+ import requests
8
+ from keras.models import load_model
9
+
10
+ headers = {"Authorization": f"Bearer {os.environ['HF_Token']}"}
11
+
12
+ model = load_model("./RNN_model.keras")
13
+
14
+
15
+ def query_embeddings(texts):
16
+ payload = {"inputs": texts, "options": {"wait_for_model": True}}
17
+
18
+ model_id = "sentence-transformers/sentence-t5-base"
19
+ API_URL = (
20
+ f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
21
+ )
22
+ response = requests.post(API_URL, headers=headers, json=payload)
23
+ return response.json()
24
+
25
+
26
+ def preprocess(sentences):
27
+ max_len = 1682
28
+ embeddings = query_embeddings(sentences)
29
+
30
+ if len(sentences) > max_len:
31
+ X = embeddings[:max_len]
32
+ else:
33
+ X = embeddings
34
+ X_padded = pad_sequences([X], maxlen=max_len, dtype="float32", padding="post")
35
+ return X_padded
36
+
37
+
38
+ def predict_from_document(sentences):
39
+ preprop = preprocess(sentences)
40
+ prediction = model.predict(preprop)
41
+ # Set the prediction threshold to 0.8 instead of 0.5, now use mean
42
+ if np.mean(prediction) < 0.5:
43
+ output = (prediction.flatten()[: len(sentences)] >= 0.5).astype(int)
44
+ else:
45
+ output = (
46
+ prediction.flatten()[: len(sentences)]
47
+ >= np.mean(prediction) * 1.20 # + np.std(prediction)
48
+ ).astype(int)
49
+ return output, prediction.flatten()[: len(sentences)]
functions/punctuation.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from youtube_transcript_api import YouTubeTranscriptApi
3
+ import json
4
+ import os
5
+
6
+ headers = {
7
+ "Authorization": f"Bearer {os.environ['HF_Token']}"
8
+ } # NOTE: put this somewhere else
9
+
10
+
11
+ def retrieve_transcript(vid_id):
12
+ try:
13
+ transcript = YouTubeTranscriptApi.get_transcript(vid_id)
14
+ return transcript
15
+ except Exception as e:
16
+ return None
17
+
18
+
19
+ def split_transcript(transcript, chunk_size=40):
20
+ sentences = []
21
+ for i in range(0, len(transcript), chunk_size):
22
+ to_add = [x["text"] for x in transcript[i : i + chunk_size]]
23
+ sentences.append(" ".join(to_add))
24
+ return sentences
25
+
26
+
27
+ def query_punctuation(splits):
28
+ payload = {"inputs": splits}
29
+ API_URL = "https://api-inference.huggingface.co/models/oliverguhr/fullstop-punctuation-multilang-large"
30
+ response = requests.post(API_URL, headers=headers, json=payload)
31
+ return response.json()
32
+
33
+
34
+ def parse_output(output, comb):
35
+ total = []
36
+
37
+ # loop over the response from the huggingface api
38
+ for i, o in enumerate(output):
39
+ added = 0
40
+ tt = comb[i]
41
+ for elem in o:
42
+ # Loop over the output chunks and add the . and ?
43
+ if elem["entity_group"] not in ["0", ",", ""]:
44
+ split = elem["end"] + added
45
+ tt = tt[:split] + elem["entity_group"] + tt[split:]
46
+ added += 1
47
+ total.append(tt)
48
+ return " ".join(total)
49
+
50
+
51
+ def punctuate(video_id):
52
+ transcript = retrieve_transcript(video_id)
53
+ splits = split_transcript(
54
+ transcript
55
+ ) # Get the transcript from the YoutubeTranscriptApi
56
+ resp = query_punctuation(splits) # Get the response from the Inference API
57
+ punctuated_transcript = parse_output(resp, splits)
58
+ return punctuated_transcript, transcript
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ youtube_transcript_api
2
+ thefuzz
3
+ numpy
4
+ tensorflow==2.15
5
+ keras
6
+ keras-nlp