File size: 2,680 Bytes
9cd971a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
## Installation and usage

```bash
pip install -r requirements.txt
```

Minimal example (evaluating English text generation)
```python
import evaluate
sescore = evaluate.load("xu1998hz/sescore")
score = sescore.compute(
    references=['sescore is a simple but effective next-generation text evaluation metric'],
    predictions=['sescore is simple effective text evaluation metric for next generation']
)
```

*SEScore* compares a list of references (gold translation/generated output examples) with a same-length list of candidate generated samples. Currently, the output range is learned and scores are most useful in relative ranking scenarios rather than absolute comparisons. We are producing a series of rescaling options to make absolute SEScore-based scaling more effective.


### Available pre-trained models

Currently, the following language/model pairs are available:

| Language | pretrained data | pretrained model link |
|----------|-----------------|-----------------------|
| English  | MT              | [xu1998hz/sescore_english_mt](https://huggingface.co/xu1998hz/sescore_english_mt) |
| German   | MT              | [xu1998hz/sescore_german_mt](https://huggingface.co/xu1998hz/sescore_german_mt) |
| English  | webNLG17        | [xu1998hz/sescore_english_webnlg17](https://huggingface.co/xu1998hz/sescore_english_webnlg17) |
| English  | CoCo captions   | [xu1998hz/sescore_english_coco](https://huggingface.co/xu1998hz/sescore_english_coco) |


Please contact repo maintainer Wenda Xu to add your models!

## Limitations

*SEScore* is trained on synthetic data in-domain. 
Although this data is generated to simulate user-relevant errors like deletion and spurious insertion, it may be limited in its ability to simulate humanlike errors.
Model applicability is domain-specific (e.g., CoCo caption-trained model will be better for captioning than MT-trained).

We are in the process of producing and benchmarking general language-level *SEScore* variants.

## Citation

If you find our work useful, please cite the following:

```bibtex
@inproceedings{xu-etal-2022-not,
  title={Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis},
  author={Xu, Wenda and Tuan, Yi-lin and Lu, Yujie and Saxon, Michael and Li, Lei and Wang, William Yang},
  booktitle ={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
  month={dec},
  year={2022},
  url={https://arxiv.org/abs/2210.05035}
}
```

## Acknowledgements

The work of the [COMET](https://github.com/Unbabel/COMET) maintainers at [Unbabel](https://duckduckgo.com/?t=ffab&q=unbabel&ia=web) has been instrumental in producing SEScore.