Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SEScore: a text generation evaluation metric""" | |
import evaluate | |
import datasets | |
import comet | |
from typing import Dict | |
import torch | |
from comet.encoders.base import Encoder | |
from comet.encoders.bert import BERTEncoder | |
from transformers import AutoModel, AutoTokenizer | |
class robertaEncoder(BERTEncoder): | |
def __init__(self, pretrained_model: str) -> None: | |
super(Encoder, self).__init__() | |
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model) | |
self.model = AutoModel.from_pretrained( | |
pretrained_model, add_pooling_layer=False | |
) | |
self.model.encoder.output_hidden_states = True | |
def from_pretrained(cls, pretrained_model: str) -> Encoder: | |
return robertaEncoder(pretrained_model) | |
def forward( | |
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs | |
) -> Dict[str, torch.Tensor]: | |
last_hidden_states, _, all_layers = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
output_hidden_states=True, | |
return_dict=False, | |
) | |
return { | |
"sentemb": last_hidden_states[:, 0, :], | |
"wordemb": last_hidden_states, | |
"all_layers": all_layers, | |
"attention_mask": attention_mask, | |
} | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@inproceedings{xu-etal-2022-not, | |
title={Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis}, | |
author={Xu, Wenda and Tuan, Yi-lin and Lu, Yujie and Saxon, Michael and Li, Lei and Wang, William Yang}, | |
booktitle ={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing}, | |
month={dec}, | |
year={2022}, | |
url={https://arxiv.org/abs/2210.05035} | |
} | |
""" | |
_DESCRIPTION = """\ | |
SEScore is an evaluation metric that trys to compute an overall score to measure text generation quality. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references | |
Args: | |
predictions: list of candidate outputs | |
references: list of references | |
Returns: | |
{"mean_score": mean_score, "scores": scores} | |
Examples: | |
>>> import evaluate | |
>>> sescore = evaluate.load("xu1998hz/sescore") | |
>>> score = sescore.compute( | |
references=['sescore is a simple but effective next-generation text evaluation metric'], | |
predictions=['sescore is simple effective text evaluation metric for next generation'] | |
) | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
class SEScore(evaluate.Metric): | |
"""SEScore""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Value("string", id="sequence"), | |
'references': datasets.Value("string", id="sequence"), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""download SEScore checkpoints to compute the scores""" | |
# Download SEScore checkpoint | |
from comet import load_from_checkpoint | |
import os | |
from huggingface_hub import snapshot_download | |
# initialize roberta into str2encoder | |
comet.encoders.str2encoder['RoBERTa'] = robertaEncoder | |
print(self.config_name) | |
if self.config_name == "default": | |
destination = snapshot_download(repo_id="xu1998hz/sescore_english_mt", revision="main") | |
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/sescore_english_mt.ckpt') | |
else: | |
destination = snapshot_download(repo_id=self.config_name, revision="main") | |
suffix = self.config_name.split('/')[-1] | |
if suffix == 'sescore_english_mt': | |
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/sescore_english_mt.ckpt') | |
elif suffix == 'sescore_german_mt': | |
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/sescore_german.ckpt') | |
elif suffix == 'sescore_english_webnlg17': | |
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/webnlg.ckpt') | |
elif suffix == 'sescore_english_coco': | |
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/caption.ckpt') | |
else: | |
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/{suffix}.ckpt') | |
def _compute(self, predictions, references, gpus=None, progress_bar=False): | |
if gpus is None: | |
gpus = 1 if torch.cuda.is_available() else 0 | |
data = {"src": references, "mt": predictions} | |
print(data) | |
data = [dict(zip(data, t)) for t in zip(*data.values())] | |
print(data) | |
scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar) | |
return {"mean_score": mean_score, "scores": scores} | |