File size: 12,250 Bytes
104aac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from typing import Any, Optional, Union, cast

import torch
from numpy.typing import NDArray

from style_bert_vits2.constants import Languages
from style_bert_vits2.logging import logger
from style_bert_vits2.models import commons, utils
from style_bert_vits2.models.hyper_parameters import HyperParameters
from style_bert_vits2.models.models import SynthesizerTrn
from style_bert_vits2.models.models_jp_extra import (
    SynthesizerTrn as SynthesizerTrnJPExtra,
)
from style_bert_vits2.nlp import (
    clean_text,
    cleaned_text_to_sequence,
    extract_bert_feature,
)
from style_bert_vits2.nlp.symbols import SYMBOLS


def get_net_g(model_path: str, version: str, device: str, hps: HyperParameters):
    if version.endswith("JP-Extra"):
        logger.info("Using JP-Extra model")
        net_g = SynthesizerTrnJPExtra(
            n_vocab=len(SYMBOLS),
            spec_channels=hps.data.filter_length // 2 + 1,
            segment_size=hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            # hps.model 以下のすべての値を引数に渡す
            use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
            use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
            use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
            use_duration_discriminator=hps.model.use_duration_discriminator,
            use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
            inter_channels=hps.model.inter_channels,
            hidden_channels=hps.model.hidden_channels,
            filter_channels=hps.model.filter_channels,
            n_heads=hps.model.n_heads,
            n_layers=hps.model.n_layers,
            kernel_size=hps.model.kernel_size,
            p_dropout=hps.model.p_dropout,
            resblock=hps.model.resblock,
            resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
            resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
            upsample_rates=hps.model.upsample_rates,
            upsample_initial_channel=hps.model.upsample_initial_channel,
            upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
            n_layers_q=hps.model.n_layers_q,
            use_spectral_norm=hps.model.use_spectral_norm,
            gin_channels=hps.model.gin_channels,
            slm=hps.model.slm,
        ).to(device)
    else:
        logger.info("Using normal model")
        net_g = SynthesizerTrn(
            n_vocab=len(SYMBOLS),
            spec_channels=hps.data.filter_length // 2 + 1,
            segment_size=hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            # hps.model 以下のすべての値を引数に渡す
            use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
            use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
            use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
            use_duration_discriminator=hps.model.use_duration_discriminator,
            use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
            inter_channels=hps.model.inter_channels,
            hidden_channels=hps.model.hidden_channels,
            filter_channels=hps.model.filter_channels,
            n_heads=hps.model.n_heads,
            n_layers=hps.model.n_layers,
            kernel_size=hps.model.kernel_size,
            p_dropout=hps.model.p_dropout,
            resblock=hps.model.resblock,
            resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
            resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
            upsample_rates=hps.model.upsample_rates,
            upsample_initial_channel=hps.model.upsample_initial_channel,
            upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
            n_layers_q=hps.model.n_layers_q,
            use_spectral_norm=hps.model.use_spectral_norm,
            gin_channels=hps.model.gin_channels,
            slm=hps.model.slm,
        ).to(device)
    net_g.state_dict()
    _ = net_g.eval()
    if model_path.endswith(".pth") or model_path.endswith(".pt"):
        _ = utils.checkpoints.load_checkpoint(
            model_path, net_g, None, skip_optimizer=True
        )
    elif model_path.endswith(".safetensors"):
        _ = utils.safetensors.load_safetensors(model_path, net_g, True)
    else:
        raise ValueError(f"Unknown model format: {model_path}")
    return net_g


def get_text(
    text: str,
    language_str: Languages,
    hps: HyperParameters,
    device: str,
    assist_text: Optional[str] = None,
    assist_text_weight: float = 0.7,
    given_phone: Optional[list[str]] = None,
    given_tone: Optional[list[int]] = None,
):
    use_jp_extra = hps.version.endswith("JP-Extra")
    # 推論時のみ呼び出されるので、raise_yomi_error は False に設定
    norm_text, phone, tone, word2ph = clean_text(
        text,
        language_str,
        use_jp_extra=use_jp_extra,
        raise_yomi_error=False,
    )
    # phone と tone の両方が与えられた場合はそれを使う
    if given_phone is not None and given_tone is not None:
        # 指定された phone と指定された tone 両方の長さが一致していなければならない
        if len(given_phone) != len(given_tone):
            raise InvalidPhoneError(
                f"Length of given_phone ({len(given_phone)}) != length of given_tone ({len(given_tone)})"
            )
        # 与えられた音素数と pyopenjtalk で生成した読みの音素数が一致しない
        if len(given_phone) != sum(word2ph):
            # 日本語の場合、len(given_phone) と sum(word2ph) が一致するように word2ph を適切に調整する
            # 他の言語は word2ph の調整方法が思いつかないのでエラー
            if language_str == Languages.JP:
                from style_bert_vits2.nlp.japanese.g2p import adjust_word2ph

                word2ph = adjust_word2ph(word2ph, phone, given_phone)
                # 上記処理により word2ph の合計が given_phone の長さと一致するはず
                # それでも一致しない場合、大半は読み上げテキストと given_phone が著しく乖離していて調整し切れなかったことを意味する
                if len(given_phone) != sum(word2ph):
                    raise InvalidPhoneError(
                        f"Length of given_phone ({len(given_phone)}) != sum of word2ph ({sum(word2ph)})"
                    )
            else:
                raise InvalidPhoneError(
                    f"Length of given_phone ({len(given_phone)}) != sum of word2ph ({sum(word2ph)})"
                )
        phone = given_phone
        # 生成あるいは指定された phone と指定された tone 両方の長さが一致していなければならない
        if len(phone) != len(given_tone):
            raise InvalidToneError(
                f"Length of phone ({len(phone)}) != length of given_tone ({len(given_tone)})"
            )
        tone = given_tone
    # tone だけが与えられた場合は clean_text() で生成した phone と合わせて使う
    elif given_tone is not None:
        # 生成した phone と指定された tone 両方の長さが一致していなければならない
        if len(phone) != len(given_tone):
            raise InvalidToneError(
                f"Length of phone ({len(phone)}) != length of given_tone ({len(given_tone)})"
            )
        tone = given_tone
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = extract_bert_feature(
        norm_text,
        word2ph,
        language_str,
        device,
        assist_text,
        assist_text_weight,
    )
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == Languages.ZH:
        bert = bert_ori
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == Languages.JP:
        bert = torch.zeros(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == Languages.EN:
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = bert_ori
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language


def infer(
    text: str,
    style_vec: NDArray[Any],
    sdp_ratio: float,
    noise_scale: float,
    noise_scale_w: float,
    length_scale: float,
    sid: int,  # In the original Bert-VITS2, its speaker_name: str, but here it's id
    language: Languages,
    hps: HyperParameters,
    net_g: Union[SynthesizerTrn, SynthesizerTrnJPExtra],
    device: str,
    skip_start: bool = False,
    skip_end: bool = False,
    assist_text: Optional[str] = None,
    assist_text_weight: float = 0.7,
    given_phone: Optional[list[str]] = None,
    given_tone: Optional[list[int]] = None,
):
    is_jp_extra = hps.version.endswith("JP-Extra")
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        assist_text=assist_text,
        assist_text_weight=assist_text_weight,
        given_phone=given_phone,
        given_tone=given_tone,
    )
    if skip_start:
        phones = phones[3:]
        tones = tones[3:]
        lang_ids = lang_ids[3:]
        bert = bert[:, 3:]
        ja_bert = ja_bert[:, 3:]
        en_bert = en_bert[:, 3:]
    if skip_end:
        phones = phones[:-2]
        tones = tones[:-2]
        lang_ids = lang_ids[:-2]
        bert = bert[:, :-2]
        ja_bert = ja_bert[:, :-2]
        en_bert = en_bert[:, :-2]
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        style_vec_tensor = torch.from_numpy(style_vec).to(device).unsqueeze(0)
        del phones
        sid_tensor = torch.LongTensor([sid]).to(device)
        if is_jp_extra:
            output = cast(SynthesizerTrnJPExtra, net_g).infer(
                x_tst,
                x_tst_lengths,
                sid_tensor,
                tones,
                lang_ids,
                ja_bert,
                style_vec=style_vec_tensor,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )
        else:
            output = cast(SynthesizerTrn, net_g).infer(
                x_tst,
                x_tst_lengths,
                sid_tensor,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                style_vec=style_vec_tensor,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )
        audio = output[0][0, 0].data.cpu().float().numpy()
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            sid_tensor,
            ja_bert,
            en_bert,
            style_vec,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio


class InvalidPhoneError(ValueError):
    pass


class InvalidToneError(ValueError):
    pass