Spaces:
Runtime error
Runtime error
import streamlit as st | |
from PIL import Image | |
import torch | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForImageToText | |
from colpali_engine.models import ColPali, ColPaliProcessor | |
from huggingface_hub import login | |
import os | |
# Set device for computation | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Get Hugging Face token from environment variables | |
hf_token = os.getenv('HF_TOKEN') | |
# Log in to Hugging Face Hub (this will authenticate globally) | |
login(token=hf_token) | |
# Load the processor and image-to-text model directly | |
try: | |
processor_img_to_text = AutoProcessor.from_pretrained("google/paligemma-3b-mix-448") | |
model_img_to_text = AutoModelForImageToText.from_pretrained("google/paligemma-3b-mix-448").to(device) | |
except Exception as e: | |
st.error(f"Error loading image-to-text model: {e}") | |
st.stop() | |
# Load ColPali model with Hugging Face token | |
try: | |
model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16).to(device) | |
processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448") | |
except Exception as e: | |
st.error(f"Error loading ColPali model or processor: {e}") | |
st.stop() | |
# Load Qwen model | |
try: | |
model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").to(device) | |
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
except Exception as e: | |
st.error(f"Error loading Qwen model or processor: {e}") | |
st.stop() | |
# Streamlit UI | |
st.title("OCR and Document Search Web Application") | |
st.write("Upload an image containing text in both Hindi and English for OCR processing and keyword search.") | |
# File uploader for the image | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
try: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("") | |
# Use the image-to-text model to extract text from the image | |
inputs_img_to_text = processor_img_to_text(images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generated_ids_img_to_text = model_img_to_text.generate(**inputs_img_to_text, max_new_tokens=128) | |
output_text_img_to_text = processor_img_to_text.batch_decode(generated_ids_img_to_text, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
st.write("Extracted Text from Image:") | |
st.write(output_text_img_to_text) | |
# Prepare input for Qwen model for image description | |
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}] | |
text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True) | |
inputs_qwen = processor_qwen(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to(device) | |
# Generate response with Qwen model | |
with torch.no_grad(): | |
output_ids_qwen = model_qwen.generate(**inputs_qwen, max_new_tokens=128) | |
generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)] | |
output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
st.write("Qwen Model Description:") | |
st.write(output_text_qwen) | |
# Keyword search in the extracted text | |
keyword = st.text_input("Enter a keyword to search in the extracted text:") | |
if keyword: | |
if keyword.lower() in output_text_img_to_text[0].lower(): | |
st.write(f"Keyword '{keyword}' found in the text.") | |
else: | |
st.write(f"Keyword '{keyword}' not found in the text.") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
if __name__ == "__main__": | |
st.write("Deploying the web application...") | |