File size: 3,316 Bytes
738953f d40212f 738953f d40212f 738953f d40212f 738953f 8298882 a000d3e d40212f a000d3e d49fd2b a000d3e d49fd2b 32f683a 508369d 32f683a 7b4c465 508369d 32f683a a000d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
mychatbot = gr.Chatbot(
avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
demo = gr.ChatInterface(fn=generate,
chatbot=mychatbot,
title="SF's AI Chat",
retry_btn=None,
undo_btn=None,
css="body { background-color: inherit; }"
"#component2 {display: none;}"
".gradio-container.gradio-container-4-8-0.svelte-1kyws56.app {max-width: 100% !important;}"
"gradio-app {background: linear-gradient(134deg,#00425e 0%,#001a3f 43%,#421438 77%) !important; background-attachment: fixed !important; background-position: top;}"
".panel.svelte-vt1mxs {background: transparent;}"
".block.svelte-90oupt { background: transparent; border-color: transparent;}"
".bot.svelte-12dsd9j.svelte-12dsd9j.svelte-12dsd9j { background: #ffffff1a; border-color: transparent; color: white;}"
".user.svelte-12dsd9j.svelte-12dsd9j.svelte-12dsd9j { background: #ffffff1a; border-color: transparent; color: white; padding: 5px 13px;}"
"div.svelte-iyf88w{ background: #cc98d445; border-color: transparent; border-radius: 25px;}"
"textarea.scroll-hide.svelte-1f354aw { background: transparent;}"
".primary.svelte-cmf5ev { background: transparent; color: white;}"
".primary.svelte-cmf5ev:hover { background: transparent; color: white;}"
"button#component-8 { display: flex; position: absolute; margin-top: 60px; border-radius: 25px;}"
"button#component-10 { flex: none; margin-left: auto; border-radius: 25px;}"
".share-button.svelte-12dsd9j { display: none;}"
"footer.svelte-mpyp5e { display: none !important;}"
)
demo.queue().launch(show_api=False) |