import gradio as gr from transformers import pipeline model_id = "knkarthick/TOPIC-DIALOGSUM" generator = pipeline(task="text2text-generation", model=model_id) def split_paragraph(paragraph, max_chunk_size=1024): words = paragraph.split() chunks = [] current_chunk = [] for word in words: if len(current_chunk) + len(word) + 1 <= max_chunk_size: current_chunk.append(word) else: chunks.append(' '.join(current_chunk)) current_chunk = [word] if current_chunk: chunks.append(' '.join(current_chunk)) return chunks def launch(input): if len(input) > 1024: return " ".join([res["generated_text"] for res in generator(split_paragraph(input, 1024))]) return generator(input)[0]["generated_text"] iface = gr.Interface(launch, inputs="text", outputs="text") iface.launch()