Spaces:
Sleeping
Sleeping
File size: 4,350 Bytes
5c7c7d5 28fcd19 76a154f 2bc6f48 76a154f b1c12fa 76a154f d534002 4e683ec 76a154f 4375b7f 76a154f 4e683ec bee5b00 4a32d8a 76a154f 4a32d8a 76a154f 2bc6f48 b0302a5 2bc6f48 5c7c7d5 76a154f 4e683ec 76a154f 2bc6f48 4e683ec 2bc6f48 88bb7df 4e683ec 6111f2c 4e683ec 6111f2c 4e683ec 76a154f 4e683ec 76a154f b11e705 4e683ec a400f4b 2bc6f48 4e683ec 76a154f bee5b00 4e683ec 76a154f 4e683ec 76a154f 4e683ec 76a154f 4e683ec 02ba784 4e683ec 76a154f 4e683ec 2bc6f48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Nekochu/Luminia-13B-v3
This Space demonstrates model Nekochu/Luminia-13B-v3 by Nekochu, a Llama 2 model with 13B parameters fine-tuned for SD gen prompt
"""
LICENSE = """
<p/>
---.
"""
def load_model(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
return model, tokenizer
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "Nekochu/Luminia-13B-v3"
model, tokenizer = load_model(model_id)
@spaces.GPU(duration=120)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
model_id: str = "Nekochu/Luminia-13B-v3",
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
model, tokenizer = load_model(model_id)
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Textbox(label="Model ID", default="Nekochu/Luminia-13B-v3"),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["### Instruction: Create stable diffusion metadata based on the given english description. Luminia ### Input: favorites and popular SFW ### Response:"],
["### Instruction: Provide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example. ### Response:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |