File size: 5,007 Bytes
53d1a2e
28fcd19
76a154f
53d1a2e
76a154f
b1c12fa
76a154f
d534002
4e683ec
76a154f
 
4375b7f
76a154f
4e683ec
4a32d8a
88bb7df
4a32d8a
76a154f
4a32d8a
 
 
76a154f
 
88bb7df
 
 
 
 
 
02ba784
4a32d8a
 
9ec97f1
 
88bb7df
9ec97f1
88bb7df
 
 
 
 
dcca886
53d1a2e
76a154f
88bb7df
 
76a154f
4e683ec
76a154f
4e683ec
 
 
 
 
 
88bb7df
 
 
 
 
4e683ec
 
 
 
 
 
6111f2c
 
 
 
 
4e683ec
 
 
6111f2c
4e683ec
 
 
 
 
 
 
 
 
 
 
76a154f
4e683ec
 
 
 
76a154f
88bb7df
 
 
 
 
 
d32b641
4e683ec
 
 
88bb7df
 
a400f4b
4e683ec
 
76a154f
 
 
 
4e683ec
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
 
4e683ec
 
 
 
 
 
 
 
 
 
 
02ba784
 
4e683ec
 
 
 
 
 
 
76a154f
 
4e683ec
88bb7df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Nekochu/Luminia-13B-v3
This Space demonstrates model Nekochu/Luminia-13B-v3 by Nekochu, a Llama 2 model with 13B parameters fine-tuned for SD gen prompt 
"""

LICENSE = """
<p/>
---.
"""

def load_model(model_id):
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False
    return model, tokenizer

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

if torch.cuda.is_available():
    model_id = "Nekochu/Luminia-13B-v3"
    model, tokenizer = load_model(model_id)

MODELS = [
    {"name": "Nekochu/Luminia-13B-v3", "id": "Nekochu/Luminia-13B-v3"},
    {"name": "Nekochu/Llama-2-13B-German-ORPO", "id": "Nekochu/Llama-2-13B-German-ORPO"},
    # Add more models here in the future
]

@spaces.GPU(duration=120)
def generate(
    model_dropdown: str,
    custom_model_id: str,
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    # Prioritize custom model ID if provided, otherwise use the dropdown selection
    selected_model_id = custom_model_id if custom_model_id else model_dropdown
    model, tokenizer = load_model(selected_model_id)

    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

model_dropdown = gr.Dropdown(
    label="Select Predefined Model",
    choices=[model["name"] for model in MODELS],
    value=MODELS[0]["name"], # Default to the first model
)
custom_model_id_input = gr.Textbox(label="Or Enter Custom Model ID", placeholder="Enter model ID here")

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        model_dropdown,
        custom_model_id_input,
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["### Instruction: Create stable diffusion metadata based on the given english description. Luminia ### Input: favorites and popular SFW ### Response:"],
        ["### Instruction: Provide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example. ### Response:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()