File size: 4,418 Bytes
28fcd19
76a154f
53d1a2e
76a154f
b1c12fa
76a154f
d534002
4e683ec
76a154f
 
4375b7f
76a154f
b11e705
 
 
 
 
4e683ec
b11e705
 
 
4a32d8a
76a154f
4a32d8a
 
 
76a154f
 
02ba784
b11e705
4a32d8a
9ec97f1
76a154f
 
4e683ec
76a154f
b11e705
4e683ec
 
 
 
 
 
b11e705
 
 
 
 
88bb7df
 
4e683ec
 
 
 
 
 
6111f2c
 
 
 
 
4e683ec
 
 
6111f2c
4e683ec
 
 
 
 
 
 
 
 
 
 
76a154f
4e683ec
 
 
 
76a154f
b11e705
 
d32b641
4e683ec
 
 
88bb7df
a400f4b
4e683ec
 
76a154f
 
 
b11e705
4e683ec
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
 
4e683ec
 
 
 
 
 
 
 
 
 
 
02ba784
 
4e683ec
 
 
 
 
 
 
76a154f
 
4e683ec
88bb7df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

MODELS = {
    "Nekochu/Luminia-13B-v3": "Default - Nekochu/Luminia-13B-v3",
    "Nekochu/Llama-2-13B-German-ORPO": "German ORPO - Nekochu/Llama-2-13B-German-ORPO",
}

DESCRIPTION = """\
# Text Generation with Selectable Models

This Space demonstrates text generation using different models. Choose a model from the dropdown and experience its creative capabilities!
"""

LICENSE = """
<p/>
---.
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU  This demo does not work on CPU.</p>"


def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    model_id: str = None,  # Add default value for model_id
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    if not model_id:
        raise ValueError("Please select a model from the dropdown.")
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


model_dropdown = gr.Dropdown(label="Select Model", choices=list(MODELS.values()))

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        model_dropdown,
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["### Instruction: Create stable diffusion metadata based on the given english description. Luminia ### Input: favorites and popular SFW ### Response:"],
        ["### Instruction: Provide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example. ### Response:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()