Spaces:
Sleeping
Sleeping
File size: 4,418 Bytes
28fcd19 76a154f 53d1a2e 76a154f b1c12fa 76a154f d534002 4e683ec 76a154f 4375b7f 76a154f b11e705 4e683ec b11e705 4a32d8a 76a154f 4a32d8a 76a154f 02ba784 b11e705 4a32d8a 9ec97f1 76a154f 4e683ec 76a154f b11e705 4e683ec b11e705 88bb7df 4e683ec 6111f2c 4e683ec 6111f2c 4e683ec 76a154f 4e683ec 76a154f b11e705 d32b641 4e683ec 88bb7df a400f4b 4e683ec 76a154f b11e705 4e683ec 76a154f 4e683ec 76a154f 4e683ec 76a154f 4e683ec 02ba784 4e683ec 76a154f 4e683ec 88bb7df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MODELS = {
"Nekochu/Luminia-13B-v3": "Default - Nekochu/Luminia-13B-v3",
"Nekochu/Llama-2-13B-German-ORPO": "German ORPO - Nekochu/Llama-2-13B-German-ORPO",
}
DESCRIPTION = """\
# Text Generation with Selectable Models
This Space demonstrates text generation using different models. Choose a model from the dropdown and experience its creative capabilities!
"""
LICENSE = """
<p/>
---.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU This demo does not work on CPU.</p>"
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
model_id: str = None, # Add default value for model_id
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
if not model_id:
raise ValueError("Please select a model from the dropdown.")
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
model_dropdown = gr.Dropdown(label="Select Model", choices=list(MODELS.values()))
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
model_dropdown,
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["### Instruction: Create stable diffusion metadata based on the given english description. Luminia ### Input: favorites and popular SFW ### Response:"],
["### Instruction: Provide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example. ### Response:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|