Spaces:
Sleeping
Sleeping
Update load model
Browse files
app.py
CHANGED
@@ -13,29 +13,31 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
# Nekochu/Luminia-13B-v3
|
16 |
-
|
17 |
-
This Space demonstrates model [Nekochu/Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3) by Nekochu, a Llama 2 model with 13B parameters fine-tuned for SD gen prompt
|
18 |
"""
|
19 |
|
20 |
LICENSE = """
|
21 |
<p/>
|
22 |
-
|
23 |
---.
|
24 |
"""
|
25 |
|
26 |
if not torch.cuda.is_available():
|
27 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
28 |
|
|
|
29 |
|
30 |
-
|
31 |
-
model_id
|
|
|
32 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
34 |
tokenizer.use_default_system_prompt = False
|
35 |
-
|
|
|
36 |
|
37 |
@spaces.GPU(duration=120)
|
38 |
def generate(
|
|
|
39 |
message: str,
|
40 |
chat_history: list[tuple[str, str]],
|
41 |
system_prompt: str,
|
@@ -45,6 +47,7 @@ def generate(
|
|
45 |
top_k: int = 50,
|
46 |
repetition_penalty: float = 1.2,
|
47 |
) -> Iterator[str]:
|
|
|
48 |
conversation = []
|
49 |
if system_prompt:
|
50 |
conversation.append({"role": "system", "content": system_prompt})
|
@@ -78,10 +81,12 @@ def generate(
|
|
78 |
outputs.append(text)
|
79 |
yield "".join(outputs)
|
80 |
|
|
|
81 |
|
82 |
chat_interface = gr.ChatInterface(
|
83 |
fn=generate,
|
84 |
additional_inputs=[
|
|
|
85 |
gr.Textbox(label="System prompt", lines=6),
|
86 |
gr.Slider(
|
87 |
label="Max new tokens",
|
|
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
# Nekochu/Luminia-13B-v3
|
16 |
+
This Space demonstrates model Nekochu/Luminia-13B-v3 by Nekochu, a Llama 2 model with 13B parameters fine-tuned for SD gen prompt
|
|
|
17 |
"""
|
18 |
|
19 |
LICENSE = """
|
20 |
<p/>
|
|
|
21 |
---.
|
22 |
"""
|
23 |
|
24 |
if not torch.cuda.is_available():
|
25 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
26 |
|
27 |
+
MODELS = {}
|
28 |
|
29 |
+
def load_model(model_id):
|
30 |
+
if model_id in MODELS:
|
31 |
+
return MODELS[model_id]
|
32 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
34 |
tokenizer.use_default_system_prompt = False
|
35 |
+
MODELS[model_id] = (model, tokenizer)
|
36 |
+
return model, tokenizer
|
37 |
|
38 |
@spaces.GPU(duration=120)
|
39 |
def generate(
|
40 |
+
model_id: str,
|
41 |
message: str,
|
42 |
chat_history: list[tuple[str, str]],
|
43 |
system_prompt: str,
|
|
|
47 |
top_k: int = 50,
|
48 |
repetition_penalty: float = 1.2,
|
49 |
) -> Iterator[str]:
|
50 |
+
model, tokenizer = load_model(model_id) # Load or retrieve the selected model
|
51 |
conversation = []
|
52 |
if system_prompt:
|
53 |
conversation.append({"role": "system", "content": system_prompt})
|
|
|
81 |
outputs.append(text)
|
82 |
yield "".join(outputs)
|
83 |
|
84 |
+
MODEL_IDS = ["Nekochu/Luminia-13B-v3", "Nekochu/Llama-2-13B-German-ORPO"] # Add more model ids as needed
|
85 |
|
86 |
chat_interface = gr.ChatInterface(
|
87 |
fn=generate,
|
88 |
additional_inputs=[
|
89 |
+
gr.Dropdown(MODEL_IDS, label="Model ID"), # Add this line
|
90 |
gr.Textbox(label="System prompt", lines=6),
|
91 |
gr.Slider(
|
92 |
label="Max new tokens",
|