import streamlit as st from fastai.vision.all import * def is_cat(x) : return x[0].isupper() learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories,map(float,probs))) def save_uploaded_file(uploadedfile): path_name = os.path.join("tmp",uploadedfile.name) with open(path_name,"wb") as f: f.write(uploadedfile.getbuffer()) st.success(f"Saved file :{uploadedfile.name} as {path_name}") return path_name upload_image = st.file_uploader("Choose a file") if upload_image is not None: image = PILImage.create(upload_image) image.thumbnail((192,192)) st.image(image) path_name = save_uploaded_file(upload_image) st.write("Prediction Propabilities:") st.write(classify_image(path_name))