sreepathi-ravikumar commited on
Commit
af97f0e
·
verified ·
1 Parent(s): 938c211

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -25
app.py CHANGED
@@ -1,33 +1,37 @@
 
1
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
2
  import torch
3
- from flask import Flask, request, jsonify
4
 
5
- app = Flask(_name_)
 
6
 
7
- # Load powerful model
8
- model_id = "HuggingFaceH4/zephyr-7b-beta"
9
- tokenizer = AutoTokenizer.from_pretrained(model_id)
10
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
 
 
11
 
12
- # Pipeline
13
- generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
14
 
15
- @app.route("/generate", methods=["POST"])
16
- def generate():
17
- input_data = request.json
18
- prompt = input_data.get("prompt", "")
19
 
20
- result = generator(
21
- prompt,
22
- max_new_tokens=500, # Longer response
23
- temperature=0.7,
24
- top_k=50,
25
- top_p=0.95,
26
- repetition_penalty=1.2,
27
- do_sample=True,
28
- )
29
-
30
- return jsonify({"response": result[0]['generated_text']})
 
 
 
 
31
 
32
- if _name_ == "_main_":
33
- app.run(host="0.0.0.0", port=7860)
 
1
+ import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
  import torch
 
4
 
5
+ # Load free model from Hugging Face (like Mistral or Mixtral)
6
+ model_name = "mistralai/Mistral-7B-Instruct-v0.1"
7
 
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ model_name,
11
+ torch_dtype=torch.float16,
12
+ device_map="auto"
13
+ )
14
 
15
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
 
16
 
17
+ def generate_answer(question):
18
+ prompt = f"[INST] {question} [/INST]"
19
+ output = pipe(prompt, max_new_tokens=500, do_sample=True, temperature=0.7)[0]['generated_text']
 
20
 
21
+ # Cut only the answer part (after the [/INST] token)
22
+ if "[/INST]" in output:
23
+ answer = output.split("[/INST]")[-1].strip()
24
+ else:
25
+ answer = output
26
+
27
+ return answer
28
+
29
+ iface = gr.Interface(
30
+ fn=generate_answer,
31
+ inputs=gr.Textbox(lines=2, placeholder="Ask any question..."),
32
+ outputs="text",
33
+ title="MentorMind AI Q&A",
34
+ description="Ask anything and get a detailed human-like answer!"
35
+ )
36
 
37
+ iface.launch()