sreyanghosh commited on
Commit
4f9b1d8
·
1 Parent(s): 6647d86

update/modified app.py

Browse files
Files changed (2) hide show
  1. app.py +36 -27
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,12 +1,20 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("sreyanghosh/lora_model")
 
 
 
 
 
8
 
 
9
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -15,34 +23,36 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
 
 
 
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -59,6 +69,5 @@ demo = gr.ChatInterface(
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from peft import PeftModel
4
 
5
+ # Load the model and tokenizer
6
+ def load_model():
7
+ base_model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Replace with your base model name
8
+ lora_model_name = "sreyanghosh/lora_model" # Replace with your LoRA model path
9
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
10
+ model = AutoModelForCausalLM.from_pretrained(base_model_name, device_map="auto")
11
+ model = PeftModel.from_pretrained(model, lora_model_name)
12
+ model.eval()
13
+ return tokenizer, model
14
 
15
+ tokenizer, model = load_model()
16
 
17
+ # Define the respond function
18
  def respond(
19
  message,
20
  history: list[tuple[str, str]],
 
23
  temperature,
24
  top_p,
25
  ):
26
+ # Prepare the conversation history
27
  messages = [{"role": "system", "content": system_message}]
28
+ for user_input, bot_response in history:
29
+ if user_input:
30
+ messages.append({"role": "user", "content": user_input})
31
+ if bot_response:
32
+ messages.append({"role": "assistant", "content": bot_response})
 
 
33
  messages.append({"role": "user", "content": message})
34
 
35
+ # Format the input for the model
36
+ conversation_text = "\n".join(
37
+ f"{msg['role']}: {msg['content']}" for msg in messages
38
+ )
39
+ inputs = tokenizer(conversation_text, return_tensors="pt", truncation=True)
40
+
41
+ # Generate the model's response
42
+ outputs = model.generate(
43
+ inputs.input_ids,
44
+ max_length=len(inputs.input_ids[0]) + max_tokens,
45
  temperature=temperature,
46
  top_p=top_p,
47
+ pad_token_id=tokenizer.eos_token_id,
48
+ )
49
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
50
 
51
+ # Extract the new response
52
+ new_response = response[len(conversation_text):].strip()
53
+ yield new_response
54
 
55
+ # Gradio app configuration
 
 
 
56
  demo = gr.ChatInterface(
57
  respond,
58
  additional_inputs=[
 
69
  ],
70
  )
71
 
 
72
  if __name__ == "__main__":
73
  demo.launch()
requirements.txt CHANGED
@@ -1,3 +1,5 @@
1
  huggingface_hub==0.25.2
2
  gradio
3
- unsloth
 
 
 
1
  huggingface_hub==0.25.2
2
  gradio
3
+ transformers
4
+ peft
5
+ torch