Spaces:
Running
on
Zero
Running
on
Zero
Added chat interface
Browse files
app.py
CHANGED
@@ -1,63 +1,28 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
message,
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
demo = gr.ChatInterface(
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from huggingface_hub import login
|
3 |
import gradio as gr
|
4 |
+
import torch
|
5 |
|
6 |
+
login(token = os.getenv('HF_TOKEN'))
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load the tokenizer and model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-11B-Vision-Instruct")
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
12 |
+
device_map="auto",
|
13 |
+
torch_dtype="auto",
|
14 |
+
)
|
15 |
|
16 |
+
def generate_response(message, history):
|
17 |
+
inputs = tokenizer(message['text'], return_tensors="pt").to("cpu")
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model.generate(inputs.input_ids, max_length=100)
|
20 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
22 |
demo = gr.ChatInterface(
|
23 |
+
fn=generate_response,
|
24 |
+
examples=[{"text": "Hello", "files": []}],
|
25 |
+
title="LLAMA 3.2 Chat",
|
26 |
+
multimodal=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
+
demo.launch(debug = True)
|
|
|
|
|
|