|
import gradio as gr |
|
from salient import vectr, clf |
|
from profanity import pf |
|
pf.set_censor("@") |
|
|
|
def predict(text): |
|
senti = clf.predict(vectr.transform([text])) |
|
if(pf.is_profane(text)): |
|
prof = True |
|
censored_text = pf.censor(text) |
|
else: |
|
prof = False |
|
censored_text = pf.censor(text) |
|
|
|
if (int(senti)): |
|
text_sent = "Salient" |
|
else: |
|
text_sent = "Not salient" |
|
|
|
return { |
|
"salient": text_sent, |
|
"profanity": prof, |
|
"censored_text": censored_text |
|
} |
|
|
|
demo = gr.Interface(fn=predict, inputs="text", outputs="json") |
|
demo.launch() |
|
|