Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
from keras_facenet import FaceNet | |
import gradio as gr | |
# Initialize FaceNet model | |
embedder = FaceNet() | |
def img_to_encoding(image, embedder): | |
try: | |
if image is None: | |
print("Debug: Image is None") | |
return None | |
if not isinstance(image, np.ndarray): | |
print(f"Debug: Image is not a numpy array, type(image)={type(image)}") | |
return None | |
print(f"Debug: Image shape = {image.shape}, dtype = {image.dtype}") | |
# Convert BGR to RGB and resize to 160x160 | |
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (160, 160)) | |
# Get the embedding | |
embedding = embedder.embeddings([img])[0] | |
return embedding | |
except Exception as e: | |
print(f"Error in img_to_encoding: {e}") | |
return None | |
database = {} | |
def register_user(image, username): | |
try: | |
if not os.path.exists('images'): | |
os.makedirs('images') | |
if image is None or image.size == 0: | |
print("Debug: Invalid image input") | |
return "Error: Uploaded image is empty or invalid." | |
print(f"Debug: Image received for registration, username={username}") | |
# Save the image to disk | |
img_path = f'images/{username}.jpg' | |
success = cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
if not success: | |
print("Debug: Failed to save image to disk") | |
return "Error: Failed to save the image." | |
encoding = img_to_encoding(image, embedder) | |
if encoding is None: | |
return "Error: Failed to process the image." | |
database[username] = encoding | |
return f"User '{username}' registered successfully!" | |
except Exception as e: | |
print(f"Error during registration: {e}") | |
return f"Error during registration: {e}" | |
def verify_user(image): | |
try: | |
if image is None or image.size == 0: | |
print("Debug: Invalid image input for verification") | |
return "Error: Uploaded image is empty or invalid." | |
print("Debug: Image received for verification") | |
encoding = img_to_encoding(image, embedder) | |
if encoding is None: | |
return "Error: Failed to process the image." | |
min_dist = 1000 | |
identity = None | |
for (name, db_enc) in database.items(): | |
dist = np.linalg.norm(encoding - db_enc) | |
if dist < min_dist: | |
min_dist = dist | |
identity = name | |
if min_dist > 5: | |
return "Identity not recognized." | |
else: | |
return f"It's {identity}, the distance is {min_dist}." | |
except Exception as e: | |
print(f"Error during verification: {e}") | |
return f"Error during verification: {e}" | |
# Gradio Interface for Registration | |
register_interface = gr.Interface( | |
fn=register_user, | |
inputs=[gr.Image(type="numpy", label="Take a Photo or Upload"), gr.Textbox(label="Username")], | |
outputs="text", | |
title="Register User", | |
description="Take a photo or upload an image and enter a username to register." | |
) | |
# Gradio Interface for Verification | |
verify_interface = gr.Interface( | |
fn=verify_user, | |
inputs=gr.Image(type="numpy", label="Take a Photo or Upload"), | |
outputs="text", | |
title="Verify User", | |
description="Take a photo or upload an image to verify the user's identity." | |
) | |
# Combine the interfaces into a single application | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("# Face Identification System") | |
with gr.Tab("Register"): | |
register_interface.render() | |
with gr.Tab("Verify"): | |
verify_interface.render() | |
# Run the Gradio application | |
if __name__ == "__main__": | |
app.launch() | |