from dotenv import load_dotenv import gradio as gr import os from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding import firebase_admin from firebase_admin import db, credentials import datetime import uuid import random # Load environment variables load_dotenv() # Initialize Firebase with provided credentials and URL cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json") firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"}) # Configure Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define directories PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Dictionary to store chat histories for different sessions session_chat_histories = {} def select_random_name(): names = ['Clara', 'Lily'] return random.choice(names) def data_ingestion_from_directory(): documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(session_id, query): chat_text_qa_msgs = [ ( "user", """ As Clara, your goal is to provide code to the user. Your task is to give code to the model and offer guidance on creating a website using Django, HTML, CSS, and Bootstrap. {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) context_str = "" if session_id in session_chat_histories: for past_query, response in reversed(session_chat_histories[session_id]): if past_query.strip(): context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, I couldn't find an answer." if session_id not in session_chat_histories: session_chat_histories[session_id] = [] session_chat_histories[session_id].append((query, response)) message_data = { "query": query, "response": response, "timestamp": datetime.datetime.now().isoformat() } save_chat_message(session_id, message_data) return response def save_chat_message(session_id, message_data): ref = db.reference(f'/chat_history/{session_id}') ref.push().set(message_data) def chat_interface(message, history): # Retrieve or create a new session ID based on history session_id = history[0][1] if history and history[0][1] else str(uuid.uuid4()) history.append((message, session_id)) # Append the session ID to history response = handle_query(session_id, message) return response, history css = ''' .circle-logo { display: inline-block; width: 40px; height: 40px; border-radius: 50%; overflow: hidden; margin-right: 10px; vertical-align: middle; } .circle-logo img { width: 100%; height: 100%; object-fit: cover; } .response-with-logo { display: flex; align-items: center; margin-bottom: 10px; } footer { display: none !important; background-color: #F8D7DA; } label.svelte-1b6s6s {display: none} ''' # Load data and start Gradio interface print("Processing PDF ingestion from directory:", PDF_DIRECTORY) data_ingestion_from_directory() gr.ChatInterface(fn=chat_interface, css=css, description="Clara", clear_btn=None, undo_btn=None, retry_btn=None).launch()