Spaces:
Runtime error
Runtime error
File size: 3,591 Bytes
169a028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# app.py from flask import Flask, request, render_template, Response import cv2 import numpy as np import tensorflow as tf # Load the TFLite model interpreter = tf.lite.Interpreter(model_path=r'midas.tflite') interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() app = Flask(__name__) # Function to preprocess the image def preprocess_image(image): image = cv2.resize(image, (256, 256)) # Resize to 256x256 image = image.astype(np.float32) / 255.0 # Normalize to [0,1] image = np.expand_dims(image, axis=0) # Add batch dimension return image # Function to process the frame def process_frame(frame): input_image = preprocess_image(frame) # Set the input tensor interpreter.set_tensor(input_details[0]['index'], input_image) # Run inference interpreter.invoke() # Get the output tensor depth_map = interpreter.get_tensor(output_details[0]['index']) # Process depth map depth_map = np.squeeze(depth_map) depth_map = (depth_map / np.max(depth_map) * 255).astype(np.uint8) depth_map_gray = cv2.cvtColor(depth_map, cv2.COLOR_GRAY2BGR) # Apply Canny edge detection on the original frame edges = cv2.Canny(frame, threshold1=100, threshold2=200) edges_colored = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) # Resize edges_colored to match depth_map dimensions edges_colored = cv2.resize(edges_colored, depth_map_gray.shape[1::-1]) # Create an overlay alpha = 0.5 overlay = cv2.addWeighted(depth_map_gray, alpha, edges_colored, alpha, 0) overlay_gray = cv2.cvtColor(overlay, cv2.COLOR_BGR2GRAY) # Segment processing height, width = overlay_gray.shape segment_width = width // 7 avg_pixel_densities = [] for i in range(7): start_x = i * segment_width end_x = (i + 1) * segment_width if i < 6 else width segment_pixels = overlay_gray[:, start_x:end_x] avg_pixel_density = np.mean(segment_pixels) avg_pixel_densities.append(avg_pixel_density) # Draw vertical lines and pixel density values for i in range(7): x = i * segment_width cv2.line(overlay_gray, (x, 0), (x, height), (255, 255, 255), 1) cv2.putText(overlay_gray, f"{avg_pixel_densities[i]:.2f}", (x + 5, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1) # Draw a dot and horizontal line center_x = width // 2 bottom_y = height - 10 dot_position = (center_x, bottom_y) cv2.circle(overlay_gray, dot_position, 5, (255, 255, 255), -1) middle_y = height // 2 cv2.line(overlay_gray, (0, middle_y), (width, middle_y), (255, 255, 255), 1) # Draw arrow lowest_index = np.argmin(avg_pixel_densities) lowest_x = lowest_index * segment_width + segment_width // 2 arrow_end = (lowest_x, height // 2) cv2.arrowedLine(overlay_gray, dot_position, arrow_end, (255, 0, 0), 2, tipLength=0.1) return overlay_gray @app.route('/') def index(): return render_template('depthmap.html') @app.route('/video_feed', methods=['POST']) def video_feed(): # Receive the frame from the client frame_data = request.files['frame'].read() nparr = np.frombuffer(frame_data, np.uint8) frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR) # Process the frame processed_frame = process_frame(frame) # Encode the processed frame as JPEG _, jpeg = cv2.imencode('.jpg', processed_frame) return Response(jpeg.tobytes(), mimetype='image/jpeg') if __name__ == '__main__': app.run(debug=True) |