Spaces:
Running
Running
srivatsavdamaraju
commited on
Update app2.py
Browse files
app2.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
import asyncio
|
2 |
from flask import Flask, request, render_template, Response
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
import tensorflow as tf
|
|
|
6 |
|
7 |
# Load the TFLite model
|
8 |
interpreter = tf.lite.Interpreter(model_path=r'midas.tflite')
|
@@ -90,18 +90,18 @@ def index():
|
|
90 |
return render_template('depthmap.html')
|
91 |
|
92 |
@app.route('/video_feed', methods=['POST'])
|
93 |
-
|
94 |
# Receive the frame from the client
|
95 |
-
frame_data =
|
96 |
nparr = np.frombuffer(frame_data, np.uint8)
|
97 |
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
98 |
|
99 |
-
# Process the frame
|
100 |
-
processed_frame =
|
101 |
|
102 |
# Encode the processed frame as JPEG
|
103 |
_, jpeg = cv2.imencode('.jpg', processed_frame)
|
104 |
return Response(jpeg.tobytes(), mimetype='image/jpeg')
|
105 |
|
106 |
if __name__ == '__main__':
|
107 |
-
app.run(debug=True,
|
|
|
|
|
1 |
from flask import Flask, request, render_template, Response
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
+
import threading
|
6 |
|
7 |
# Load the TFLite model
|
8 |
interpreter = tf.lite.Interpreter(model_path=r'midas.tflite')
|
|
|
90 |
return render_template('depthmap.html')
|
91 |
|
92 |
@app.route('/video_feed', methods=['POST'])
|
93 |
+
def video_feed():
|
94 |
# Receive the frame from the client
|
95 |
+
frame_data = request.files['frame'].read()
|
96 |
nparr = np.frombuffer(frame_data, np.uint8)
|
97 |
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
98 |
|
99 |
+
# Process the frame
|
100 |
+
processed_frame = process_frame(frame)
|
101 |
|
102 |
# Encode the processed frame as JPEG
|
103 |
_, jpeg = cv2.imencode('.jpg', processed_frame)
|
104 |
return Response(jpeg.tobytes(), mimetype='image/jpeg')
|
105 |
|
106 |
if __name__ == '__main__':
|
107 |
+
app.run(debug=True, threaded=True)
|