Spaces:
Running
Running
Create face_recog.py
Browse files- face_recog.py +88 -0
face_recog.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import face_recognition
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import base64
|
8 |
+
|
9 |
+
# Initialize Flask app
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
# Set the maximum file upload size (50MB)
|
13 |
+
app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 # 50MB
|
14 |
+
|
15 |
+
# Define the path to dataset and test image
|
16 |
+
dataset_folder_path = '/content/sample_data/dataset'
|
17 |
+
|
18 |
+
# Load and encode faces from the dataset folder
|
19 |
+
def load_face_encodings(dataset_folder_path):
|
20 |
+
known_face_encodings = []
|
21 |
+
known_face_names = []
|
22 |
+
|
23 |
+
for img_path in Path(dataset_folder_path).glob("*.jpg"):
|
24 |
+
image = face_recognition.load_image_file(img_path)
|
25 |
+
encodings = face_recognition.face_encodings(image)
|
26 |
+
|
27 |
+
if encodings:
|
28 |
+
known_face_encodings.append(encodings[0])
|
29 |
+
known_face_names.append(img_path.stem)
|
30 |
+
|
31 |
+
return known_face_encodings, known_face_names
|
32 |
+
|
33 |
+
# Load and process the uploaded test image
|
34 |
+
def load_test_image(test_image):
|
35 |
+
test_image_rgb = cv2.imdecode(np.fromstring(test_image.read(), np.uint8), cv2.IMREAD_COLOR)
|
36 |
+
test_image_rgb = cv2.cvtColor(test_image_rgb, cv2.COLOR_BGR2RGB)
|
37 |
+
face_locations = face_recognition.face_locations(test_image_rgb)
|
38 |
+
face_encodings = face_recognition.face_encodings(test_image_rgb, face_locations)
|
39 |
+
return test_image_rgb, face_locations, face_encodings
|
40 |
+
|
41 |
+
# Compare faces from the test image with the dataset faces
|
42 |
+
def compare_faces(known_face_encodings, known_face_names, test_image_encodings):
|
43 |
+
matches = []
|
44 |
+
for test_encoding in test_image_encodings:
|
45 |
+
results = face_recognition.compare_faces(known_face_encodings, test_encoding)
|
46 |
+
if True in results:
|
47 |
+
first_match_index = results.index(True)
|
48 |
+
matches.append(known_face_names[first_match_index])
|
49 |
+
else:
|
50 |
+
matches.append("Unknown")
|
51 |
+
return matches
|
52 |
+
|
53 |
+
# Convert image to base64
|
54 |
+
def convert_image_to_base64(image):
|
55 |
+
_, buffer = cv2.imencode('.jpg', image)
|
56 |
+
img_bytes = buffer.tobytes()
|
57 |
+
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
58 |
+
return img_base64
|
59 |
+
|
60 |
+
# Flask route for face recognition
|
61 |
+
@app.route('/recognize_faces', methods=['POST'])
|
62 |
+
def recognize_faces():
|
63 |
+
if 'image' not in request.files:
|
64 |
+
return jsonify({"error": "No image file provided!"}), 400
|
65 |
+
|
66 |
+
# Load known face encodings
|
67 |
+
known_face_encodings, known_face_names = load_face_encodings(dataset_folder_path)
|
68 |
+
|
69 |
+
image_file = request.files['image']
|
70 |
+
test_image_rgb, face_locations, test_image_encodings = load_test_image(image_file)
|
71 |
+
|
72 |
+
matches = compare_faces(known_face_encodings, known_face_names, test_image_encodings)
|
73 |
+
|
74 |
+
for (top, right, bottom, left), name in zip(face_locations, matches):
|
75 |
+
cv2.rectangle(test_image_rgb, (left, top), (right, bottom), (0, 0, 255), 2)
|
76 |
+
font = cv2.FONT_HERSHEY_DUPLEX
|
77 |
+
cv2.putText(test_image_rgb, name, (left + 6, bottom - 6), font, 0.5, (255, 255, 255), 1)
|
78 |
+
|
79 |
+
result_image_base64 = convert_image_to_base64(test_image_rgb)
|
80 |
+
return jsonify({'recognized_faces': matches, 'image': result_image_base64})
|
81 |
+
|
82 |
+
@app.route('/')
|
83 |
+
def hello_world():
|
84 |
+
return 'Welcome to the Face Recognition API! Upload an image for recognition.'
|
85 |
+
|
86 |
+
# Run Flask app
|
87 |
+
if __name__ == '__main__':
|
88 |
+
app.run()
|