Spaces:
Running
Running
File size: 7,951 Bytes
322caed 9b02fee 322caed cbe95b8 322caed 23e33b3 322caed 910cadf 322caed 5c4ac32 322caed 5c4ac32 322caed 898404d 322caed 898404d 5c4ac32 322caed 5c4ac32 322caed 5c4ac32 b31c659 898404d 322caed b31c659 322caed 910cadf 5c4ac32 910cadf 898404d 322caed 5c4ac32 898404d 322caed b31c659 322caed 898404d 322caed b31c659 910cadf 5c4ac32 910cadf 322caed b31c659 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
<!DOCTYPE html>
<html>
<head>
<title>AI Night Vision Camera</title>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/coco-ssd"></script>
<style>
body {
margin: 0;
background: #000;
color: #fff;
font-family: monospace;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
display: flex;
flex-direction: column;
align-items: center;
}
.video-container {
position: relative;
width: 640px;
height: 480px;
border: 2px solid #0f0;
border-radius: 8px;
overflow: hidden;
}
#video {
width: 100%;
height: 100%;
object-fit: cover;
}
#canvas {
position: absolute;
top: 0;
left: 0;
}
.detection-info {
margin-top: 20px;
padding: 10px;
background: rgba(0, 255, 0, 0.1);
border: 1px solid #0f0;
border-radius: 4px;
width: 100%;
max-width: 620px;
}
.stats {
display: flex;
justify-content: space-between;
margin-top: 10px;
font-size: 14px;
}
.night-vision {
filter: brightness(2) contrast(1.2) hue-rotate(120deg) grayscale(0.5);
}
.detection-box {
position: absolute;
border: 2px solid #0f0;
background: rgba(0, 255, 0, 0.1);
}
.detection-label {
position: absolute;
top: -25px;
left: 0;
background: #0f0;
color: #000;
padding: 2px 6px;
font-size: 12px;
border-radius: 2px;
}
</style>
</head>
<body>
<div class="container">
<div class="video-container">
<video id="video" autoplay playsinline></video>
<canvas id="canvas"></canvas>
</div>
<div class="detection-info">
<div id="detections"></div>
<div class="stats">
<span id="fps">FPS: 0</span>
<span id="objects">Objects detected: 0</span>
</div>
</div>
</div>
<script>
let video = document.getElementById('video');
let canvas = document.getElementById('canvas');
let ctx = canvas.getContext('2d');
let model;
let isNightVision = true; // Night vision is enabled by default
let isDetecting = true; // Detection is enabled by default
let lastTime = performance.now();
let frameCount = 0;
// Initialize camera and AI model
async function init() {
console.log('Loading COCO-SSD model...');
// Load COCO-SSD model
model = await cocoSsd.load();
console.log('COCO-SSD model loaded.');
// Setup camera
const constraints = {
video: {
width: 640,
height: 480,
facingMode: 'environment',
advanced: [{
exposureMode: 'manual',
exposureCompensation: 2
}]
}
};
const stream = await navigator.mediaDevices.getUserMedia(constraints);
video.srcObject = stream;
// Set canvas size
canvas.width = 640;
canvas.height = 480;
// Enable night vision by default
if (isNightVision) {
video.className = 'night-vision';
}
// Check if video is playing
video.onplaying = () => {
console.log('Video stream started successfully.');
};
video.onerror = (e) => {
console.error('Error starting video stream:', e);
};
// Start detection loop
requestAnimationFrame(detect);
}
async function detect() {
if (isDetecting) {
// Calculate FPS
const now = performance.now();
frameCount++;
if (now - lastTime >= 1000) {
document.getElementById('fps').textContent = `FPS: ${frameCount}`;
frameCount = 0;
lastTime = now;
}
// Detect objects
try {
const predictions = await model.detect(video);
// Clear previous detections
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Draw new detections
predictions.forEach(prediction => {
// Draw bounding box
ctx.strokeStyle = '#00ff00';
ctx.lineWidth = 2;
ctx.strokeRect(
prediction.bbox[0],
prediction.bbox[1],
prediction.bbox[2],
prediction.bbox[3]
);
// Draw label background
ctx.fillStyle = '#00ff00';
ctx.fillRect(
prediction.bbox[0],
prediction.bbox[1] - 20,
prediction.bbox[2],
20
);
// Draw label text
ctx.fillStyle = '#000000';
ctx.font = '16px monospace';
ctx.fillText(
`${prediction.class} ${Math.round(prediction.score * 100)}%`,
prediction.bbox[0] + 5,
prediction.bbox[1] - 5
);
});
// Update detection info
document.getElementById('objects').textContent =
`Objects detected: ${predictions.length}`;
document.getElementById('detections').innerHTML =
predictions.map(p =>
`Detected ${p.class} (${Math.round(p.score * 100)}% confidence)`
).join('<br>');
} catch (error) {
console.error('Error in detection:', error);
}
}
// Continue calling the detection loop
requestAnimationFrame(detect);
}
// Start application
init().catch(err => {
console.error('Error initializing application:', err);
});
// Add image processing for better night vision
const imageProcessor = new ImageCapture(video.srcObject.getVideoTracks()[0]);
async function enhanceNightVision() {
if (isNightVision) {
try {
const photoCapabilities = await imageProcessor.getPhotoCapabilities();
await imageProcessor.setOptions({
brightness: photoCapabilities.brightness.max,
contrast: photoCapabilities.contrast.max,
saturation: 0,
sharpness: photoCapabilities.sharpness.max,
exposureMode: 'manual',
exposureCompensation: 2,
whiteBalanceMode: 'manual'
});
} catch (err) {
console.log('Night vision enhancement not supported');
}
}
}
</script>
</body>
</html>
|