|
from flask import Flask, request, render_template
|
|
import numpy as np
|
|
import os
|
|
from PIL import Image
|
|
import tensorflow as tf
|
|
import os
|
|
os.environ["SM_FRAMEWORK"] = "tf.keras"
|
|
from tensorflow.keras.models import load_model
|
|
import segmentation_models as sm
|
|
from tensorflow.keras import backend as K
|
|
import matplotlib.pyplot as plt
|
|
|
|
app = Flask(__name__)
|
|
app.config['UPLOAD_FOLDER'] = 'static/uploads'
|
|
|
|
|
|
weights = [0.1666] * 6
|
|
dice_loss = sm.losses.DiceLoss(class_weights=weights)
|
|
focal_loss = sm.losses.CategoricalFocalLoss()
|
|
total_loss = dice_loss + (1 * focal_loss)
|
|
|
|
def jacard_coef(y_true, y_pred):
|
|
y_true_f = K.flatten(y_true)
|
|
y_pred_f = K.flatten(y_pred)
|
|
intersection = K.sum(y_true_f * y_pred_f)
|
|
return (intersection + 1.0) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + 1.0)
|
|
|
|
model_path = r"C:\Users\sriva\Videos\dubai segmentation\satellite_standard_unet_100epochs.hdf5"
|
|
custom_objects = {
|
|
"dice_loss_plus_1focal_loss": total_loss,
|
|
"jacard_coef": jacard_coef
|
|
}
|
|
model = load_model(model_path, custom_objects=custom_objects)
|
|
|
|
@app.route('/')
|
|
def index():
|
|
return render_template('index.html')
|
|
|
|
@app.route('/predict', methods=['POST'])
|
|
def predict():
|
|
if 'file' not in request.files:
|
|
return "No file uploaded.", 400
|
|
file = request.files['file']
|
|
if file.filename == '':
|
|
return "No selected file.", 400
|
|
|
|
|
|
file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
|
|
file.save(file_path)
|
|
|
|
|
|
test_img = Image.open(file_path)
|
|
desired_width = 256
|
|
desired_height = 256
|
|
test_img = test_img.resize((desired_width, desired_height))
|
|
test_img = np.array(test_img)
|
|
test_img_input = np.expand_dims(test_img, 0)
|
|
|
|
|
|
prediction = model.predict(test_img_input)
|
|
predicted_img = np.argmax(prediction, axis=3)[0, :, :]
|
|
|
|
|
|
plt.imsave(os.path.join(app.config['UPLOAD_FOLDER'], 'predicted_' + file.filename), predicted_img, cmap='jet')
|
|
|
|
return render_template('index.html', uploaded_image=file.filename, predicted_image='predicted_' + file.filename)
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True)
|
|
|