srivatsavdamaraju's picture
Update main.py
0aa3c3b verified
from flask import Flask, request, render_template
import numpy as np
import os
from PIL import Image
import tensorflow as tf
import os
os.environ["SM_FRAMEWORK"] = "tf.keras"
from tensorflow.keras.models import load_model
import segmentation_models as sm
from tensorflow.keras import backend as K
import matplotlib.pyplot as plt
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/uploads'
# Load your model
weights = [0.1666] * 6 # Adjust if necessary
dice_loss = sm.losses.DiceLoss(class_weights=weights)
focal_loss = sm.losses.CategoricalFocalLoss()
total_loss = dice_loss + (1 * focal_loss)
def jacard_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (intersection + 1.0) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + 1.0)
model_path = "satellite_standard_unet_100epochs.hdf5"
custom_objects = {
"dice_loss_plus_1focal_loss": total_loss,
"jacard_coef": jacard_coef
}
model = load_model(model_path, custom_objects=custom_objects)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if 'file' not in request.files:
return "No file uploaded.", 400
file = request.files['file']
if file.filename == '':
return "No selected file.", 400
# Save the uploaded image
file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
file.save(file_path)
# Load and preprocess the image
test_img = Image.open(file_path)
desired_width = 256
desired_height = 256
test_img = test_img.resize((desired_width, desired_height))
test_img = np.array(test_img)
test_img_input = np.expand_dims(test_img, 0)
# Make the prediction
prediction = model.predict(test_img_input)
predicted_img = np.argmax(prediction, axis=3)[0, :, :]
# Save the predicted image
plt.imsave(os.path.join(app.config['UPLOAD_FOLDER'], 'predicted_' + file.filename), predicted_img, cmap='jet')
return render_template('index.html', uploaded_image=file.filename, predicted_image='predicted_' + file.filename)