File size: 27,800 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import os
import re
import xml.etree.ElementTree as ET
from glob import glob
from pathlib import Path
from typing import List

import pandas as pd
from tqdm import tqdm

########################
# DATASETS
########################


def cml_tts(root_path, meta_file, ignored_speakers=None):
    """Normalizes the CML-TTS meta data file to TTS format
    https://github.com/freds0/CML-TTS-Dataset/"""
    filepath = os.path.join(root_path, meta_file)
    # ensure there are 4 columns for every line
    with open(filepath, "r", encoding="utf8") as f:
        lines = f.readlines()
    num_cols = len(lines[0].split("|"))  # take the first row as reference
    for idx, line in enumerate(lines[1:]):
        if len(line.split("|")) != num_cols:
            print(f" > Missing column in line {idx + 1} -> {line.strip()}")
    # load metadata
    metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|")
    assert all(x in metadata.columns for x in ["wav_filename", "transcript"])
    client_id = None if "client_id" in metadata.columns else "default"
    emotion_name = None if "emotion_name" in metadata.columns else "neutral"
    items = []
    not_found_counter = 0
    for row in metadata.itertuples():
        if client_id is None and ignored_speakers is not None and row.client_id in ignored_speakers:
            continue
        audio_path = os.path.join(root_path, row.wav_filename)
        if not os.path.exists(audio_path):
            not_found_counter += 1
            continue
        items.append(
            {
                "text": row.transcript,
                "audio_file": audio_path,
                "speaker_name": client_id if client_id is not None else row.client_id,
                "emotion_name": emotion_name if emotion_name is not None else row.emotion_name,
                "root_path": root_path,
            }
        )
    if not_found_counter > 0:
        print(f" | > [!] {not_found_counter} files not found")
    return items


def coqui(root_path, meta_file, ignored_speakers=None):
    """Interal dataset formatter."""
    filepath = os.path.join(root_path, meta_file)
    # ensure there are 4 columns for every line
    with open(filepath, "r", encoding="utf8") as f:
        lines = f.readlines()
    num_cols = len(lines[0].split("|"))  # take the first row as reference
    for idx, line in enumerate(lines[1:]):
        if len(line.split("|")) != num_cols:
            print(f" > Missing column in line {idx + 1} -> {line.strip()}")
    # load metadata
    metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|")
    assert all(x in metadata.columns for x in ["audio_file", "text"])
    speaker_name = None if "speaker_name" in metadata.columns else "coqui"
    emotion_name = None if "emotion_name" in metadata.columns else "neutral"
    items = []
    not_found_counter = 0
    for row in metadata.itertuples():
        if speaker_name is None and ignored_speakers is not None and row.speaker_name in ignored_speakers:
            continue
        audio_path = os.path.join(root_path, row.audio_file)
        if not os.path.exists(audio_path):
            not_found_counter += 1
            continue
        items.append(
            {
                "text": row.text,
                "audio_file": audio_path,
                "speaker_name": speaker_name if speaker_name is not None else row.speaker_name,
                "emotion_name": emotion_name if emotion_name is not None else row.emotion_name,
                "root_path": root_path,
            }
        )
    if not_found_counter > 0:
        print(f" | > [!] {not_found_counter} files not found")
    return items


def tweb(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalize TWEB dataset.
    https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset
    """
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "tweb"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("\t")
            wav_file = os.path.join(root_path, cols[0] + ".wav")
            text = cols[1]
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def mozilla(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes Mozilla meta data files to TTS format"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "mozilla"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = cols[1].strip()
            text = cols[0].strip()
            wav_file = os.path.join(root_path, "wavs", wav_file)
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def mozilla_de(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes Mozilla meta data files to TTS format"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "mozilla"
    with open(txt_file, "r", encoding="ISO 8859-1") as ttf:
        for line in ttf:
            cols = line.strip().split("|")
            wav_file = cols[0].strip()
            text = cols[1].strip()
            folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL"
            wav_file = os.path.join(root_path, folder_name, wav_file)
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def mailabs(root_path, meta_files=None, ignored_speakers=None):
    """Normalizes M-AI-Labs meta data files to TTS format

    Args:
        root_path (str): root folder of the MAILAB language folder.
        meta_files (str):  list of meta files to be used in the training. If None, finds all the csv files
            recursively. Defaults to None
    """
    speaker_regex = re.compile(f"by_book{os.sep}(male|female){os.sep}(?P<speaker_name>[^{os.sep}]+){os.sep}")
    if not meta_files:
        csv_files = glob(root_path + f"{os.sep}**{os.sep}metadata.csv", recursive=True)
    else:
        csv_files = meta_files

    # meta_files = [f.strip() for f in meta_files.split(",")]
    items = []
    for csv_file in csv_files:
        if os.path.isfile(csv_file):
            txt_file = csv_file
        else:
            txt_file = os.path.join(root_path, csv_file)

        folder = os.path.dirname(txt_file)
        # determine speaker based on folder structure...
        speaker_name_match = speaker_regex.search(txt_file)
        if speaker_name_match is None:
            continue
        speaker_name = speaker_name_match.group("speaker_name")
        # ignore speakers
        if isinstance(ignored_speakers, list):
            if speaker_name in ignored_speakers:
                continue
        print(" | > {}".format(csv_file))
        with open(txt_file, "r", encoding="utf-8") as ttf:
            for line in ttf:
                cols = line.split("|")
                if not meta_files:
                    wav_file = os.path.join(folder, "wavs", cols[0] + ".wav")
                else:
                    wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav")
                if os.path.isfile(wav_file):
                    text = cols[1].strip()
                    items.append(
                        {"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}
                    )
                else:
                    # M-AI-Labs have some missing samples, so just print the warning
                    print("> File %s does not exist!" % (wav_file))
    return items


def ljspeech(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the LJSpeech meta data file to TTS format
    https://keithito.com/LJ-Speech-Dataset/"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "ljspeech"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
            text = cols[2]
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def ljspeech_test(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the LJSpeech meta data file for TTS testing
    https://keithito.com/LJ-Speech-Dataset/"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    with open(txt_file, "r", encoding="utf-8") as ttf:
        speaker_id = 0
        for idx, line in enumerate(ttf):
            # 2 samples per speaker to avoid eval split issues
            if idx % 2 == 0:
                speaker_id += 1
            cols = line.split("|")
            wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
            text = cols[2]
            items.append(
                {"text": text, "audio_file": wav_file, "speaker_name": f"ljspeech-{speaker_id}", "root_path": root_path}
            )
    return items


def thorsten(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the thorsten meta data file to TTS format
    https://github.com/thorstenMueller/deep-learning-german-tts/"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "thorsten"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
            text = cols[1]
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def sam_accenture(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the sam-accenture meta data file to TTS format
    https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files"""
    xml_file = os.path.join(root_path, "voice_over_recordings", meta_file)
    xml_root = ET.parse(xml_file).getroot()
    items = []
    speaker_name = "sam_accenture"
    for item in xml_root.findall("./fileid"):
        text = item.text
        wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav")
        if not os.path.exists(wav_file):
            print(f" [!] {wav_file} in metafile does not exist. Skipping...")
            continue
        items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def ruslan(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the RUSLAN meta data file to TTS format
    https://ruslan-corpus.github.io/"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "ruslan"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav")
            text = cols[1]
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def css10(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the CSS10 dataset file to TTS format"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "css10"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, cols[0])
            text = cols[1]
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def nancy(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Normalizes the Nancy meta data file to TTS format"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "nancy"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            utt_id = line.split()[1]
            text = line[line.find('"') + 1 : line.rfind('"') - 1]
            wav_file = os.path.join(root_path, "wavn", utt_id + ".wav")
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def common_voice(root_path, meta_file, ignored_speakers=None):
    """Normalize the common voice meta data file to TTS format."""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            if line.startswith("client_id"):
                continue
            cols = line.split("\t")
            text = cols[2]
            speaker_name = cols[0]
            # ignore speakers
            if isinstance(ignored_speakers, list):
                if speaker_name in ignored_speakers:
                    continue
            wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav"))
            items.append(
                {"text": text, "audio_file": wav_file, "speaker_name": "MCV_" + speaker_name, "root_path": root_path}
            )
    return items


def libri_tts(root_path, meta_files=None, ignored_speakers=None):
    """https://ai.google/tools/datasets/libri-tts/"""
    items = []
    if not meta_files:
        meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
    else:
        if isinstance(meta_files, str):
            meta_files = [os.path.join(root_path, meta_files)]

    for meta_file in meta_files:
        _meta_file = os.path.basename(meta_file).split(".")[0]
        with open(meta_file, "r", encoding="utf-8") as ttf:
            for line in ttf:
                cols = line.split("\t")
                file_name = cols[0]
                speaker_name, chapter_id, *_ = cols[0].split("_")
                _root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
                wav_file = os.path.join(_root_path, file_name + ".wav")
                text = cols[2]
                # ignore speakers
                if isinstance(ignored_speakers, list):
                    if speaker_name in ignored_speakers:
                        continue
                items.append(
                    {
                        "text": text,
                        "audio_file": wav_file,
                        "speaker_name": f"LTTS_{speaker_name}",
                        "root_path": root_path,
                    }
                )
    for item in items:
        assert os.path.exists(item["audio_file"]), f" [!] wav files don't exist - {item['audio_file']}"
    return items


def custom_turkish(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "turkish-female"
    skipped_files = []
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav")
            if not os.path.exists(wav_file):
                skipped_files.append(wav_file)
                continue
            text = cols[1].strip()
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    print(f" [!] {len(skipped_files)} files skipped. They don't exist...")
    return items


# ToDo: add the dataset link when the dataset is released publicly
def brspeech(root_path, meta_file, ignored_speakers=None):
    """BRSpeech 3.0 beta"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            if line.startswith("wav_filename"):
                continue
            cols = line.split("|")
            wav_file = os.path.join(root_path, cols[0])
            text = cols[2]
            speaker_id = cols[3]
            # ignore speakers
            if isinstance(ignored_speakers, list):
                if speaker_id in ignored_speakers:
                    continue
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_id, "root_path": root_path})
    return items


def vctk(root_path, meta_files=None, wavs_path="wav48_silence_trimmed", mic="mic1", ignored_speakers=None):
    """VCTK dataset v0.92.

    URL:
        https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip

    This dataset has 2 recordings per speaker that are annotated with ```mic1``` and ```mic2```.
    It is believed that (😄 ) ```mic1``` files are the same as the previous version of the dataset.

    mic1:
        Audio recorded using an omni-directional microphone (DPA 4035).
        Contains very low frequency noises.
        This is the same audio released in previous versions of VCTK:
        https://doi.org/10.7488/ds/1994

    mic2:
        Audio recorded using a small diaphragm condenser microphone with
        very wide bandwidth (Sennheiser MKH 800).
        Two speakers, p280 and p315 had technical issues of the audio
        recordings using MKH 800.
    """
    file_ext = "flac"
    items = []
    meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
    for meta_file in meta_files:
        _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
        file_id = txt_file.split(".")[0]
        # ignore speakers
        if isinstance(ignored_speakers, list):
            if speaker_id in ignored_speakers:
                continue
        with open(meta_file, "r", encoding="utf-8") as file_text:
            text = file_text.readlines()[0]
        # p280 has no mic2 recordings
        if speaker_id == "p280":
            wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_mic1.{file_ext}")
        else:
            wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_{mic}.{file_ext}")
        if os.path.exists(wav_file):
            items.append(
                {"text": text, "audio_file": wav_file, "speaker_name": "VCTK_" + speaker_id, "root_path": root_path}
            )
        else:
            print(f" [!] wav files don't exist - {wav_file}")
    return items


def vctk_old(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None):
    """homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
    items = []
    meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
    for meta_file in meta_files:
        _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
        file_id = txt_file.split(".")[0]
        # ignore speakers
        if isinstance(ignored_speakers, list):
            if speaker_id in ignored_speakers:
                continue
        with open(meta_file, "r", encoding="utf-8") as file_text:
            text = file_text.readlines()[0]
        wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav")
        items.append(
            {"text": text, "audio_file": wav_file, "speaker_name": "VCTK_old_" + speaker_id, "root_path": root_path}
        )
    return items


def synpaflex(root_path, metafiles=None, **kwargs):  # pylint: disable=unused-argument
    items = []
    speaker_name = "synpaflex"
    root_path = os.path.join(root_path, "")
    wav_files = glob(f"{root_path}**/*.wav", recursive=True)
    for wav_file in wav_files:
        if os.sep + "wav" + os.sep in wav_file:
            txt_file = wav_file.replace("wav", "txt")
        else:
            txt_file = os.path.join(
                os.path.dirname(wav_file), "txt", os.path.basename(wav_file).replace(".wav", ".txt")
            )
        if os.path.exists(txt_file) and os.path.exists(wav_file):
            with open(txt_file, "r", encoding="utf-8") as file_text:
                text = file_text.readlines()[0]
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def open_bible(root_path, meta_files="train", ignore_digits_sentences=True, ignored_speakers=None):
    """ToDo: Refer the paper when available"""
    items = []
    split_dir = meta_files
    meta_files = glob(f"{os.path.join(root_path, split_dir)}/**/*.txt", recursive=True)
    for meta_file in meta_files:
        _, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
        file_id = txt_file.split(".")[0]
        # ignore speakers
        if isinstance(ignored_speakers, list):
            if speaker_id in ignored_speakers:
                continue
        with open(meta_file, "r", encoding="utf-8") as file_text:
            text = file_text.readline().replace("\n", "")
        # ignore sentences that contains digits
        if ignore_digits_sentences and any(map(str.isdigit, text)):
            continue
        wav_file = os.path.join(root_path, split_dir, speaker_id, file_id + ".flac")
        items.append({"text": text, "audio_file": wav_file, "speaker_name": "OB_" + speaker_id, "root_path": root_path})
    return items


def mls(root_path, meta_files=None, ignored_speakers=None):
    """http://www.openslr.org/94/"""
    items = []
    with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta:
        for line in meta:
            file, text = line.split("\t")
            text = text[:-1]
            speaker, book, *_ = file.split("_")
            wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav")
            # ignore speakers
            if isinstance(ignored_speakers, list):
                if speaker in ignored_speakers:
                    continue
            items.append(
                {"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker, "root_path": root_path}
            )
    return items


# ======================================== VOX CELEB ===========================================
def voxceleb2(root_path, meta_file=None, **kwargs):  # pylint: disable=unused-argument
    """
    :param meta_file   Used only for consistency with load_tts_samples api
    """
    return _voxcel_x(root_path, meta_file, voxcel_idx="2")


def voxceleb1(root_path, meta_file=None, **kwargs):  # pylint: disable=unused-argument
    """
    :param meta_file   Used only for consistency with load_tts_samples api
    """
    return _voxcel_x(root_path, meta_file, voxcel_idx="1")


def _voxcel_x(root_path, meta_file, voxcel_idx):
    assert voxcel_idx in ["1", "2"]
    expected_count = 148_000 if voxcel_idx == "1" else 1_000_000
    voxceleb_path = Path(root_path)
    cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv"
    cache_to.parent.mkdir(exist_ok=True)

    # if not exists meta file, crawl recursively for 'wav' files
    if meta_file is not None:
        with open(str(meta_file), "r", encoding="utf-8") as f:
            return [x.strip().split("|") for x in f.readlines()]

    elif not cache_to.exists():
        cnt = 0
        meta_data = []
        wav_files = voxceleb_path.rglob("**/*.wav")
        for path in tqdm(
            wav_files,
            desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.",
            total=expected_count,
        ):
            speaker_id = str(Path(path).parent.parent.stem)
            assert speaker_id.startswith("id")
            text = None  # VoxCel does not provide transciptions, and they are not needed for training the SE
            meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n")
            cnt += 1
        with open(str(cache_to), "w", encoding="utf-8") as f:
            f.write("".join(meta_data))
        if cnt < expected_count:
            raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}")

    with open(str(cache_to), "r", encoding="utf-8") as f:
        return [x.strip().split("|") for x in f.readlines()]


def emotion(root_path, meta_file, ignored_speakers=None):
    """Generic emotion dataset"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            if line.startswith("file_path"):
                continue
            cols = line.split(",")
            wav_file = os.path.join(root_path, cols[0])
            speaker_id = cols[1]
            emotion_id = cols[2].replace("\n", "")
            # ignore speakers
            if isinstance(ignored_speakers, list):
                if speaker_id in ignored_speakers:
                    continue
            items.append(
                {"audio_file": wav_file, "speaker_name": speaker_id, "emotion_name": emotion_id, "root_path": root_path}
            )
    return items


def baker(root_path: str, meta_file: str, **kwargs) -> List[List[str]]:  # pylint: disable=unused-argument
    """Normalizes the Baker meta data file to TTS format

    Args:
        root_path (str): path to the baker dataset
        meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence
    Returns:
        List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences
    """
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "baker"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            wav_name, text = line.rstrip("\n").split("|")
            wav_path = os.path.join(root_path, "clips_22", wav_name)
            items.append({"text": text, "audio_file": wav_path, "speaker_name": speaker_name, "root_path": root_path})
    return items


def kokoro(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "kokoro"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
            text = cols[2].replace(" ", "")
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def kss(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    """Korean single-speaker dataset from https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset"""
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "kss"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, cols[0])
            text = cols[2]  # cols[1] => 6월, cols[2] => 유월
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items


def bel_tts_formatter(root_path, meta_file, **kwargs):  # pylint: disable=unused-argument
    txt_file = os.path.join(root_path, meta_file)
    items = []
    speaker_name = "bel_tts"
    with open(txt_file, "r", encoding="utf-8") as ttf:
        for line in ttf:
            cols = line.split("|")
            wav_file = os.path.join(root_path, cols[0])
            text = cols[1]
            items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
    return items