File size: 15,299 Bytes
c885bbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
import torch.nn as nn
import torch.nn.functional as F
from vocoder.distribution import sample_from_discretized_mix_logistic
from vocoder.display import *
from vocoder.audio import *


class ResBlock(nn.Module):
    def __init__(self, dims):
        super().__init__()
        self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
        self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
        self.batch_norm1 = nn.BatchNorm1d(dims)
        self.batch_norm2 = nn.BatchNorm1d(dims)

    def forward(self, x):
        residual = x
        x = self.conv1(x)
        x = self.batch_norm1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.batch_norm2(x)
        return x + residual


class MelResNet(nn.Module):
    def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
        super().__init__()
        k_size = pad * 2 + 1
        self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
        self.batch_norm = nn.BatchNorm1d(compute_dims)
        self.layers = nn.ModuleList()
        for i in range(res_blocks):
            self.layers.append(ResBlock(compute_dims))
        self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)

    def forward(self, x):
        x = self.conv_in(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        for f in self.layers: x = f(x)
        x = self.conv_out(x)
        return x


class Stretch2d(nn.Module):
    def __init__(self, x_scale, y_scale):
        super().__init__()
        self.x_scale = x_scale
        self.y_scale = y_scale

    def forward(self, x):
        b, c, h, w = x.size()
        x = x.unsqueeze(-1).unsqueeze(3)
        x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
        return x.view(b, c, h * self.y_scale, w * self.x_scale)


class UpsampleNetwork(nn.Module):
    def __init__(self, feat_dims, upsample_scales, compute_dims,
                 res_blocks, res_out_dims, pad):
        super().__init__()
        total_scale = np.cumproduct(upsample_scales)[-1]
        self.indent = pad * total_scale
        self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
        self.resnet_stretch = Stretch2d(total_scale, 1)
        self.up_layers = nn.ModuleList()
        for scale in upsample_scales:
            k_size = (1, scale * 2 + 1)
            padding = (0, scale)
            stretch = Stretch2d(scale, 1)
            conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
            conv.weight.data.fill_(1. / k_size[1])
            self.up_layers.append(stretch)
            self.up_layers.append(conv)

    def forward(self, m):
        aux = self.resnet(m).unsqueeze(1)
        aux = self.resnet_stretch(aux)
        aux = aux.squeeze(1)
        m = m.unsqueeze(1)
        for f in self.up_layers: m = f(m)
        m = m.squeeze(1)[:, :, self.indent:-self.indent]
        return m.transpose(1, 2), aux.transpose(1, 2)


class WaveRNN(nn.Module):
    def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors,
                 feat_dims, compute_dims, res_out_dims, res_blocks,
                 hop_length, sample_rate, mode='RAW'):
        super().__init__()
        self.mode = mode
        self.pad = pad
        if self.mode == 'RAW' :
            self.n_classes = 2 ** bits
        elif self.mode == 'MOL' :
            self.n_classes = 30
        else :
            RuntimeError("Unknown model mode value - ", self.mode)

        self.rnn_dims = rnn_dims
        self.aux_dims = res_out_dims // 4
        self.hop_length = hop_length
        self.sample_rate = sample_rate

        self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad)
        self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims)
        self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
        self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True)
        self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
        self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
        self.fc3 = nn.Linear(fc_dims, self.n_classes)

        self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False)
        self.num_params()

    def forward(self, x, mels):
        self.step += 1
        bsize = x.size(0)
        if torch.cuda.is_available():
            h1 = torch.zeros(1, bsize, self.rnn_dims).cuda()
            h2 = torch.zeros(1, bsize, self.rnn_dims).cuda()
        else:
            h1 = torch.zeros(1, bsize, self.rnn_dims).cpu()
            h2 = torch.zeros(1, bsize, self.rnn_dims).cpu()
        mels, aux = self.upsample(mels)

        aux_idx = [self.aux_dims * i for i in range(5)]
        a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
        a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
        a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
        a4 = aux[:, :, aux_idx[3]:aux_idx[4]]

        x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
        x = self.I(x)
        res = x
        x, _ = self.rnn1(x, h1)

        x = x + res
        res = x
        x = torch.cat([x, a2], dim=2)
        x, _ = self.rnn2(x, h2)

        x = x + res
        x = torch.cat([x, a3], dim=2)
        x = F.relu(self.fc1(x))

        x = torch.cat([x, a4], dim=2)
        x = F.relu(self.fc2(x))
        return self.fc3(x)

    def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None):
        mu_law = mu_law if self.mode == 'RAW' else False
        progress_callback = progress_callback or self.gen_display

        self.eval()
        output = []
        start = time.time()
        rnn1 = self.get_gru_cell(self.rnn1)
        rnn2 = self.get_gru_cell(self.rnn2)

        with torch.no_grad():
            if torch.cuda.is_available():
                mels = mels.cuda()
            else:
                mels = mels.cpu()
            wave_len = (mels.size(-1) - 1) * self.hop_length
            mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both')
            mels, aux = self.upsample(mels.transpose(1, 2))

            if batched:
                mels = self.fold_with_overlap(mels, target, overlap)
                aux = self.fold_with_overlap(aux, target, overlap)

            b_size, seq_len, _ = mels.size()

            if torch.cuda.is_available():
                h1 = torch.zeros(b_size, self.rnn_dims).cuda()
                h2 = torch.zeros(b_size, self.rnn_dims).cuda()
                x = torch.zeros(b_size, 1).cuda()
            else:
                h1 = torch.zeros(b_size, self.rnn_dims).cpu()
                h2 = torch.zeros(b_size, self.rnn_dims).cpu()
                x = torch.zeros(b_size, 1).cpu()

            d = self.aux_dims
            aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]

            for i in range(seq_len):

                m_t = mels[:, i, :]

                a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)

                x = torch.cat([x, m_t, a1_t], dim=1)
                x = self.I(x)
                h1 = rnn1(x, h1)

                x = x + h1
                inp = torch.cat([x, a2_t], dim=1)
                h2 = rnn2(inp, h2)

                x = x + h2
                x = torch.cat([x, a3_t], dim=1)
                x = F.relu(self.fc1(x))

                x = torch.cat([x, a4_t], dim=1)
                x = F.relu(self.fc2(x))

                logits = self.fc3(x)

                if self.mode == 'MOL':
                    sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
                    output.append(sample.view(-1))
                    if torch.cuda.is_available():
                        # x = torch.FloatTensor([[sample]]).cuda()
                        x = sample.transpose(0, 1).cuda()
                    else:
                        x = sample.transpose(0, 1)

                elif self.mode == 'RAW' :
                    posterior = F.softmax(logits, dim=1)
                    distrib = torch.distributions.Categorical(posterior)

                    sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1.
                    output.append(sample)
                    x = sample.unsqueeze(-1)
                else:
                    raise RuntimeError("Unknown model mode value - ", self.mode)

                if i % 100 == 0:
                    gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
                    progress_callback(i, seq_len, b_size, gen_rate)

        output = torch.stack(output).transpose(0, 1)
        output = output.cpu().numpy()
        output = output.astype(np.float64)
        
        if batched:
            output = self.xfade_and_unfold(output, target, overlap)
        else:
            output = output[0]

        if mu_law:
            output = decode_mu_law(output, self.n_classes, False)
        if hp.apply_preemphasis:
            output = de_emphasis(output)

        # Fade-out at the end to avoid signal cutting out suddenly
        fade_out = np.linspace(1, 0, 20 * self.hop_length)
        output = output[:wave_len]
        output[-20 * self.hop_length:] *= fade_out
        
        self.train()

        return output


    def gen_display(self, i, seq_len, b_size, gen_rate):
        pbar = progbar(i, seq_len)
        msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
        stream(msg)

    def get_gru_cell(self, gru):
        gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
        gru_cell.weight_hh.data = gru.weight_hh_l0.data
        gru_cell.weight_ih.data = gru.weight_ih_l0.data
        gru_cell.bias_hh.data = gru.bias_hh_l0.data
        gru_cell.bias_ih.data = gru.bias_ih_l0.data
        return gru_cell

    def pad_tensor(self, x, pad, side='both'):
        # NB - this is just a quick method i need right now
        # i.e., it won't generalise to other shapes/dims
        b, t, c = x.size()
        total = t + 2 * pad if side == 'both' else t + pad
        if torch.cuda.is_available():
            padded = torch.zeros(b, total, c).cuda()
        else:
            padded = torch.zeros(b, total, c).cpu()
        if side == 'before' or side == 'both':
            padded[:, pad:pad + t, :] = x
        elif side == 'after':
            padded[:, :t, :] = x
        return padded

    def fold_with_overlap(self, x, target, overlap):

        ''' Fold the tensor with overlap for quick batched inference.
            Overlap will be used for crossfading in xfade_and_unfold()

        Args:
            x (tensor)    : Upsampled conditioning features.
                            shape=(1, timesteps, features)
            target (int)  : Target timesteps for each index of batch
            overlap (int) : Timesteps for both xfade and rnn warmup

        Return:
            (tensor) : shape=(num_folds, target + 2 * overlap, features)

        Details:
            x = [[h1, h2, ... hn]]

            Where each h is a vector of conditioning features

            Eg: target=2, overlap=1 with x.size(1)=10

            folded = [[h1, h2, h3, h4],
                      [h4, h5, h6, h7],
                      [h7, h8, h9, h10]]
        '''

        _, total_len, features = x.size()

        # Calculate variables needed
        num_folds = (total_len - overlap) // (target + overlap)
        extended_len = num_folds * (overlap + target) + overlap
        remaining = total_len - extended_len

        # Pad if some time steps poking out
        if remaining != 0:
            num_folds += 1
            padding = target + 2 * overlap - remaining
            x = self.pad_tensor(x, padding, side='after')

        if torch.cuda.is_available():
            folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda()
        else:
            folded = torch.zeros(num_folds, target + 2 * overlap, features).cpu()

        # Get the values for the folded tensor
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            folded[i] = x[:, start:end, :]

        return folded

    def xfade_and_unfold(self, y, target, overlap):

        ''' Applies a crossfade and unfolds into a 1d array.

        Args:
            y (ndarry)    : Batched sequences of audio samples
                            shape=(num_folds, target + 2 * overlap)
                            dtype=np.float64
            overlap (int) : Timesteps for both xfade and rnn warmup

        Return:
            (ndarry) : audio samples in a 1d array
                       shape=(total_len)
                       dtype=np.float64

        Details:
            y = [[seq1],
                 [seq2],
                 [seq3]]

            Apply a gain envelope at both ends of the sequences

            y = [[seq1_in, seq1_target, seq1_out],
                 [seq2_in, seq2_target, seq2_out],
                 [seq3_in, seq3_target, seq3_out]]

            Stagger and add up the groups of samples:

            [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]

        '''

        num_folds, length = y.shape
        target = length - 2 * overlap
        total_len = num_folds * (target + overlap) + overlap

        # Need some silence for the rnn warmup
        silence_len = overlap // 2
        fade_len = overlap - silence_len
        silence = np.zeros((silence_len), dtype=np.float64)

        # Equal power crossfade
        t = np.linspace(-1, 1, fade_len, dtype=np.float64)
        fade_in = np.sqrt(0.5 * (1 + t))
        fade_out = np.sqrt(0.5 * (1 - t))

        # Concat the silence to the fades
        fade_in = np.concatenate([silence, fade_in])
        fade_out = np.concatenate([fade_out, silence])

        # Apply the gain to the overlap samples
        y[:, :overlap] *= fade_in
        y[:, -overlap:] *= fade_out

        unfolded = np.zeros((total_len), dtype=np.float64)

        # Loop to add up all the samples
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            unfolded[start:end] += y[i]

        return unfolded

    def get_step(self) :
        return self.step.data.item()

    def checkpoint(self, model_dir, optimizer) :
        k_steps = self.get_step() // 1000
        self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer)

    def log(self, path, msg) :
        with open(path, 'a') as f:
            print(msg, file=f)

    def load(self, path, optimizer) :
        checkpoint = torch.load(path)
        if "optimizer_state" in checkpoint:
            self.load_state_dict(checkpoint["model_state"])
            optimizer.load_state_dict(checkpoint["optimizer_state"])
        else:
            # Backwards compatibility
            self.load_state_dict(checkpoint)

    def save(self, path, optimizer) :
        torch.save({
            "model_state": self.state_dict(),
            "optimizer_state": optimizer.state_dict(),
        }, path)

    def num_params(self, print_out=True):
        parameters = filter(lambda p: p.requires_grad, self.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        if print_out :
            print('Trainable Parameters: %.3fM' % parameters)