File size: 23,055 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# ported from: https://github.com/neonbjb/tortoise-tts

import functools
import math
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Config

from TTS.tts.layers.xtts.gpt_inference import GPT2InferenceModel
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler


def null_position_embeddings(range, dim):
    return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)


class LearnedPositionEmbeddings(nn.Module):
    def __init__(self, seq_len, model_dim, init=0.02, relative=False):
        super().__init__()
        # nn.Embedding
        self.emb = torch.nn.Embedding(seq_len, model_dim)
        # Initializing this way is standard for GPT-2
        self.emb.weight.data.normal_(mean=0.0, std=init)
        self.relative = relative
        self.seq_len = seq_len

    def forward(self, x):
        sl = x.shape[1]
        if self.relative:
            start = random.randint(sl, self.seq_len) - sl
            return self.emb(torch.arange(start, start + sl, device=x.device))
        else:
            return self.emb(torch.arange(0, sl, device=x.device))

    def get_fixed_embedding(self, ind, dev):
        return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)


def build_hf_gpt_transformer(
    layers,
    model_dim,
    heads,
    max_mel_seq_len,
    max_text_seq_len,
    max_prompt_len,
    checkpointing,
):
    """
    GPT-2 implemented by the HuggingFace library.
    """
    from transformers import GPT2Config, GPT2Model

    gpt_config = GPT2Config(
        vocab_size=256,  # Unused.
        n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len,
        n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len,
        n_embd=model_dim,
        n_layer=layers,
        n_head=heads,
        gradient_checkpointing=checkpointing,
        use_cache=not checkpointing,
    )
    gpt = GPT2Model(gpt_config)
    # Override the built in positional embeddings
    del gpt.wpe
    gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
    # Built-in token embeddings are unused.
    del gpt.wte

    mel_pos_emb = (
        LearnedPositionEmbeddings(max_mel_seq_len, model_dim)
        if max_mel_seq_len != -1
        else functools.partial(null_position_embeddings, dim=model_dim)
    )
    text_pos_emb = (
        LearnedPositionEmbeddings(max_text_seq_len, model_dim)
        if max_mel_seq_len != -1
        else functools.partial(null_position_embeddings, dim=model_dim)
    )
    # gpt = torch.compile(gpt, mode="reduce-overhead", fullgraph=True)
    return gpt, mel_pos_emb, text_pos_emb, None, None


class GPT(nn.Module):
    def __init__(
        self,
        start_text_token=261,
        stop_text_token=0,
        layers=8,
        model_dim=512,
        heads=8,
        max_text_tokens=120,
        max_mel_tokens=250,
        max_prompt_tokens=70,
        max_conditioning_inputs=1,
        code_stride_len=1024,
        number_text_tokens=256,
        num_audio_tokens=8194,
        start_audio_token=8192,
        stop_audio_token=8193,
        train_solo_embeddings=False,
        checkpointing=False,
        average_conditioning_embeddings=False,
        label_smoothing=0.0,
        use_perceiver_resampler=False,
        perceiver_cond_length_compression=256,
    ):
        """
        Args:

        """
        super().__init__()

        self.label_smoothing = label_smoothing
        self.number_text_tokens = number_text_tokens
        self.start_text_token = start_text_token
        self.stop_text_token = stop_text_token
        self.num_audio_tokens = num_audio_tokens
        self.start_audio_token = start_audio_token
        self.stop_audio_token = stop_audio_token
        self.start_prompt_token = start_audio_token
        self.stop_prompt_token = stop_audio_token
        self.layers = layers
        self.heads = heads
        self.model_dim = model_dim
        self.max_conditioning_inputs = max_conditioning_inputs
        self.max_gen_mel_tokens = max_mel_tokens - self.max_conditioning_inputs - 2
        self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs
        self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2
        self.max_prompt_tokens = max_prompt_tokens
        self.code_stride_len = code_stride_len
        self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
        self.conditioning_dropout = nn.Dropout1d(0.1)
        self.average_conditioning_embeddings = average_conditioning_embeddings
        self.use_perceiver_resampler = use_perceiver_resampler
        self.perceiver_cond_length_compression = perceiver_cond_length_compression

        self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
        self.mel_embedding = nn.Embedding(self.num_audio_tokens, model_dim)

        (
            self.gpt,
            self.mel_pos_embedding,
            self.text_pos_embedding,
            self.mel_layer_pos_embedding,
            self.text_layer_pos_embedding,
        ) = build_hf_gpt_transformer(
            layers,
            model_dim,
            heads,
            self.max_mel_tokens,
            self.max_text_tokens,
            self.max_prompt_tokens,
            checkpointing,
        )
        if train_solo_embeddings:
            self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True)
            self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True)
        else:
            self.mel_solo_embedding = 0
            self.text_solo_embedding = 0

        self.final_norm = nn.LayerNorm(model_dim)
        self.text_head = nn.Linear(model_dim, self.number_text_tokens)
        self.mel_head = nn.Linear(model_dim, self.num_audio_tokens)

        if self.use_perceiver_resampler:
            # XTTS v2
            self.conditioning_perceiver = PerceiverResampler(
                dim=model_dim,
                depth=2,
                dim_context=model_dim,
                num_latents=32,
                dim_head=64,
                heads=8,
                ff_mult=4,
                use_flash_attn=False,
            )
        else:
            # XTTS v1
            self.prompt_embedding = nn.Embedding(self.num_audio_tokens, model_dim)
            self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, model_dim)

    def get_grad_norm_parameter_groups(self):
        return {
            "conditioning_encoder": list(self.conditioning_encoder.parameters()),
            "conditioning_perceiver": list(self.conditioning_perceiver.parameters())
            if self.use_perceiver_resampler
            else None,
            "gpt": list(self.gpt.parameters()),
            "heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()),
        }

    def init_gpt_for_inference(self, kv_cache=True, use_deepspeed=False):
        seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1
        gpt_config = GPT2Config(
            vocab_size=self.max_mel_tokens,
            n_positions=seq_length,
            n_ctx=seq_length,
            n_embd=self.model_dim,
            n_layer=self.layers,
            n_head=self.heads,
            gradient_checkpointing=False,
            use_cache=True,
        )
        self.gpt_inference = GPT2InferenceModel(
            gpt_config,
            self.gpt,
            self.mel_pos_embedding,
            self.mel_embedding,
            self.final_norm,
            self.mel_head,
            kv_cache=kv_cache,
        )
        self.gpt.wte = self.mel_embedding

        if use_deepspeed:
            import deepspeed

            self.ds_engine = deepspeed.init_inference(
                model=self.gpt_inference.half(),  # Transformers models
                mp_size=1,  # Number of GPU
                dtype=torch.float32,  # desired data type of output
                replace_method="auto",  # Lets DS autmatically identify the layer to replace
                replace_with_kernel_inject=True,  # replace the model with the kernel injector
            )
            self.gpt_inference = self.ds_engine.module.eval()

    def set_inputs_and_targets(self, input, start_token, stop_token):
        inp = F.pad(input, (1, 0), value=start_token)
        tar = F.pad(input, (0, 1), value=stop_token)
        return inp, tar

    def set_mel_padding(self, mel_input_tokens, code_lengths):
        """
        Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
        that audio clip, reformats the tokens with stop_audio_token in place of the zero padding. This is required
        preformatting to create a working TTS model.
        """
        # Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
        for b in range(len(code_lengths)):
            actual_end = code_lengths[b]
            if actual_end < mel_input_tokens.shape[-1]:
                mel_input_tokens[b, actual_end:] = self.stop_audio_token
        return mel_input_tokens

    def get_logits(
        self,
        first_inputs,
        first_head,
        second_inputs=None,
        second_head=None,
        prompt=None,
        get_attns=False,
        return_latent=False,
        attn_mask_cond=None,
        attn_mask_text=None,
        attn_mask_mel=None,
    ):
        if prompt is not None:
            offset = prompt.shape[1]
            if second_inputs is not None:
                emb = torch.cat([prompt, first_inputs, second_inputs], dim=1)
            else:
                emb = torch.cat([prompt, first_inputs], dim=1)

        # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
        attn_mask = None
        if attn_mask_text is not None:
            attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1)
            if prompt is not None:
                attn_mask_cond = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device)
                attn_mask = torch.cat([attn_mask_cond, attn_mask], dim=1)

        gpt_out = self.gpt(
            inputs_embeds=emb,
            return_dict=True,
            output_attentions=get_attns,
            attention_mask=attn_mask,
        )

        if get_attns:
            return gpt_out.attentions

        enc = gpt_out.last_hidden_state[:, offset:]
        enc = self.final_norm(enc)

        if return_latent:
            return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :]

        first_logits = enc[:, : first_inputs.shape[1]]
        first_logits = first_head(first_logits)
        first_logits = first_logits.permute(0, 2, 1)
        if second_inputs is not None:
            second_logits = enc[:, -second_inputs.shape[1] :]
            second_logits = second_head(second_logits)
            second_logits = second_logits.permute(0, 2, 1)
            return first_logits, second_logits
        else:
            return first_logits

    def get_conditioning(self, speech_conditioning_input):
        speech_conditioning_input = (
            speech_conditioning_input.unsqueeze(1)
            if len(speech_conditioning_input.shape) == 3
            else speech_conditioning_input
        )
        conds = []
        for j in range(speech_conditioning_input.shape[1]):
            conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
        conds = torch.stack(conds, dim=1)
        conds = conds.mean(dim=1)
        return conds

    def get_prompts(self, prompt_codes):
        """
        Create a prompt from the mel codes. This is used to condition the model on the mel codes.
        Pad the prompt with start and stop mel tokens.
        """
        prompt = prompt_codes
        if self.training:
            lengths = []
            # Compute the real prompt length based on the first encounter with the token 83 used for padding
            for i in range(prompt_codes.shape[0]):
                length = 0
                for j in range(prompt_codes.shape[1]):
                    if prompt_codes[i, j] == 83:
                        break
                    else:
                        length += 1
                lengths.append(length)

            # prompt_len = random.randint(1, 9)  # in secs
            prompt_len = 3
            prompt_len = prompt_len * 24  # in frames
            if prompt_codes.shape[-1] >= prompt_len:
                for i in range(prompt_codes.shape[0]):
                    if lengths[i] < prompt_len:
                        start = 0
                    else:
                        start = random.randint(0, lengths[i] - prompt_len)
                prompt = prompt_codes[:, start : start + prompt_len]

        # add start and stop tokens
        prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token)
        prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token)
        return prompt

    def get_style_emb(self, cond_input, return_latent=False):
        """
        cond_input: (b, 80, s) or (b, 1, 80, s)
        conds: (b, 1024, s)
        """
        conds = None
        if not return_latent:
            if cond_input.ndim == 4:
                cond_input = cond_input.squeeze(1)
            conds = self.conditioning_encoder(cond_input)  # (b, d, s)
            if self.use_perceiver_resampler:
                conds = self.conditioning_perceiver(conds.permute(0, 2, 1)).transpose(1, 2)  # (b, d, 32)
        else:
            # already computed
            conds = cond_input.unsqueeze(1)
        return conds

    def forward(
        self,
        text_inputs,
        text_lengths,
        audio_codes,
        wav_lengths,
        cond_mels=None,
        cond_idxs=None,
        cond_lens=None,
        cond_latents=None,
        return_attentions=False,
        return_latent=False,
    ):
        """
        Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
        (actuated by `text_first`).

        text_inputs: long tensor, (b,t)
        text_lengths: long tensor, (b,)
        mel_inputs:  long tensor, (b,m)
        wav_lengths: long tensor, (b,)
        cond_mels: MEL float tensor, (b, 1, 80,s)
        cond_idxs: cond start and end indexs, (b, 2)

        If return_attentions is specified, only logits are returned.
        If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
        """
        # ❗ FIXIT
        if self.max_conditioning_inputs == 0:
            assert cond_mels is None, " ❗ cond_mels is not None, but max_conditioning_inputs == 0"

        max_text_len = text_lengths.max()
        code_lengths = torch.ceil(wav_lengths / self.code_stride_len).long() + 3

        if cond_lens is not None:
            if self.use_perceiver_resampler:
                cond_lens = cond_lens // self.perceiver_cond_length_compression
            else:
                cond_lens = cond_lens // self.code_stride_len

        if cond_idxs is not None:
            # recompute cond idxs for mel lengths
            for idx in range(cond_idxs.size(0)):
                if self.use_perceiver_resampler:
                    cond_idxs[idx] = cond_idxs[idx] // self.perceiver_cond_length_compression
                else:
                    cond_idxs[idx] = cond_idxs[idx] // self.code_stride_len

        # ensure that the cond_mel does not have padding
        # if cond_lens is not None and cond_idxs is None:
        #     min_cond_len = torch.min(cond_lens)
        #     cond_mels = cond_mels[:, :, :, :min_cond_len]

        # If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes.
        max_mel_len = code_lengths.max()

        if max_mel_len > audio_codes.shape[-1]:
            audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1]))

        # 💖 Lovely assertions
        assert (
            max_mel_len <= audio_codes.shape[-1]
        ), f" ❗ max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})"
        assert (
            max_text_len <= text_inputs.shape[-1]
        ), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})"

        # Append stop token to text inputs
        text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token)

        # Append silence token to mel codes
        audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_audio_token)

        # Pad mel codes with stop_audio_token
        audio_codes = self.set_mel_padding(
            audio_codes, code_lengths - 3
        )  # -3 to get the real code lengths without consider start and stop tokens that was not added yet

        # Build input and target tensors
        # Prepend start token to inputs and append stop token to targets
        text_inputs, text_targets = self.set_inputs_and_targets(
            text_inputs, self.start_text_token, self.stop_text_token
        )
        audio_codes, mel_targets = self.set_inputs_and_targets(
            audio_codes, self.start_audio_token, self.stop_audio_token
        )

        # Set attn_mask
        attn_mask_cond = None
        attn_mask_text = None
        attn_mask_mel = None
        if not return_latent:
            attn_mask_cond = torch.ones(
                cond_mels.shape[0],
                cond_mels.shape[-1],
                dtype=torch.bool,
                device=text_inputs.device,
            )
            attn_mask_text = torch.ones(
                text_inputs.shape[0],
                text_inputs.shape[1],
                dtype=torch.bool,
                device=text_inputs.device,
            )
            attn_mask_mel = torch.ones(
                audio_codes.shape[0],
                audio_codes.shape[1],
                dtype=torch.bool,
                device=audio_codes.device,
            )

            if cond_idxs is not None:
                # use masking approach
                for idx, r in enumerate(cond_idxs):
                    l = r[1] - r[0]
                    attn_mask_cond[idx, l:] = 0.0
            elif cond_lens is not None:
                for idx, l in enumerate(cond_lens):
                    attn_mask_cond[idx, l:] = 0.0

            for idx, l in enumerate(text_lengths):
                attn_mask_text[idx, l + 1 :] = 0.0

            for idx, l in enumerate(code_lengths):
                attn_mask_mel[idx, l + 1 :] = 0.0

        # Compute text embeddings + positional embeddings
        text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)

        # Compute mel embeddings + positional embeddings
        mel_emb = self.mel_embedding(audio_codes) + self.mel_pos_embedding(audio_codes)

        # Compute speech conditioning input
        if cond_latents is None:
            cond_latents = self.get_style_emb(cond_mels).transpose(1, 2)

        # Get logits
        sub = -5  # don't ask me why 😄
        if self.training:
            sub = -1

        text_logits, mel_logits = self.get_logits(
            text_emb,
            self.text_head,
            mel_emb,
            self.mel_head,
            prompt=cond_latents,
            get_attns=return_attentions,
            return_latent=return_latent,
            attn_mask_cond=attn_mask_cond,
            attn_mask_text=attn_mask_text,
            attn_mask_mel=attn_mask_mel,
        )
        if return_latent:
            return mel_logits[:, :sub]  # sub to prevent bla.

        if return_attentions:
            return mel_logits

        # Set paddings to -1 to ignore them in loss
        for idx, l in enumerate(text_lengths):
            text_targets[idx, l + 1 :] = -1

        for idx, l in enumerate(code_lengths):
            mel_targets[idx, l + 1 :] = -1

        # check if stoptoken is in every row of mel_targets
        assert (mel_targets == self.stop_audio_token).sum() >= mel_targets.shape[
            0
        ], f" ❗ mel_targets does not contain stop token ({self.stop_audio_token}) in every row."

        # ignore the loss for the segment used for conditioning
        # coin flip for the segment to be ignored
        if cond_idxs is not None:
            cond_start = cond_idxs[idx, 0]
            cond_end = cond_idxs[idx, 1]
            mel_targets[idx, cond_start:cond_end] = -1

        # Compute losses
        loss_text = F.cross_entropy(
            text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing
        )
        loss_mel = F.cross_entropy(
            mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing
        )
        return loss_text.mean(), loss_mel.mean(), mel_logits

    def inference(self, cond_latents, text_inputs, **hf_generate_kwargs):
        self.compute_embeddings(cond_latents, text_inputs)
        return self.generate(cond_latents, text_inputs, **hf_generate_kwargs)

    def compute_embeddings(
        self,
        cond_latents,
        text_inputs,
    ):
        text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
        text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
        emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
        emb = torch.cat([cond_latents, emb], dim=1)
        self.gpt_inference.store_prefix_emb(emb)
        gpt_inputs = torch.full(
            (
                emb.shape[0],
                emb.shape[1] + 1,  # +1 for the start_audio_token
            ),
            fill_value=1,
            dtype=torch.long,
            device=text_inputs.device,
        )
        gpt_inputs[:, -1] = self.start_audio_token
        return gpt_inputs

    def generate(
        self,
        cond_latents,
        text_inputs,
        **hf_generate_kwargs,
    ):
        gpt_inputs = self.compute_embeddings(cond_latents, text_inputs)
        gen = self.gpt_inference.generate(
            gpt_inputs,
            bos_token_id=self.start_audio_token,
            pad_token_id=self.stop_audio_token,
            eos_token_id=self.stop_audio_token,
            max_length=self.max_gen_mel_tokens + gpt_inputs.shape[-1],
            **hf_generate_kwargs,
        )
        if "return_dict_in_generate" in hf_generate_kwargs:
            return gen.sequences[:, gpt_inputs.shape[1] :], gen
        return gen[:, gpt_inputs.shape[1] :]

    def get_generator(self, fake_inputs, **hf_generate_kwargs):
        return self.gpt_inference.generate_stream(
            fake_inputs,
            bos_token_id=self.start_audio_token,
            pad_token_id=self.stop_audio_token,
            eos_token_id=self.stop_audio_token,
            max_length=self.max_gen_mel_tokens + fake_inputs.shape[-1],
            do_stream=True,
            **hf_generate_kwargs,
        )