File size: 20,318 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
from dataclasses import dataclass, field
from typing import Dict, List, Tuple, Union

import torch
import torch.nn as nn
import torchaudio
from coqpit import Coqpit
from torch.nn import functional as F
from torch.utils.data import DataLoader
from trainer.torch import DistributedSampler
from trainer.trainer_utils import get_optimizer, get_scheduler

from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.datasets.dataset import TTSDataset
from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram
from TTS.tts.layers.xtts.dvae import DiscreteVAE
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer
from TTS.tts.layers.xtts.trainer.dataset import XTTSDataset
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.models.xtts import Xtts, XttsArgs, XttsAudioConfig
from TTS.utils.io import load_fsspec


@dataclass
class GPTTrainerConfig(XttsConfig):
    lr: float = 5e-06
    training_seed: int = 1
    optimizer_wd_only_on_weights: bool = False
    weighted_loss_attrs: dict = field(default_factory=lambda: {})
    weighted_loss_multipliers: dict = field(default_factory=lambda: {})
    test_sentences: List[dict] = field(default_factory=lambda: [])


@dataclass
class XttsAudioConfig(XttsAudioConfig):
    dvae_sample_rate: int = 22050


@dataclass
class GPTArgs(XttsArgs):
    min_conditioning_length: int = 66150
    max_conditioning_length: int = 132300
    gpt_loss_text_ce_weight: float = 0.01
    gpt_loss_mel_ce_weight: float = 1.0
    gpt_num_audio_tokens: int = 8194
    debug_loading_failures: bool = False
    max_wav_length: int = 255995  # ~11.6 seconds
    max_text_length: int = 200
    tokenizer_file: str = ""
    mel_norm_file: str = "https://coqui.gateway.scarf.sh/v0.14.0_models/mel_norms.pth"
    dvae_checkpoint: str = ""
    xtts_checkpoint: str = ""
    gpt_checkpoint: str = ""  # if defined it will replace the gpt weights on xtts model
    vocoder: str = ""  # overide vocoder key on the config to avoid json write issues


def callback_clearml_load_save(operation_type, model_info):
    # return None means skip the file upload/log, returning model_info will continue with the log/upload
    # you can also change the upload destination file name model_info.upload_filename or check the local file size with Path(model_info.local_model_path).stat().st_size
    assert operation_type in ("load", "save")
    # print(operation_type, model_info.__dict__)

    if "similarities.pth" in model_info.__dict__["local_model_path"]:
        return None

    return model_info


class GPTTrainer(BaseTTS):
    def __init__(self, config: Coqpit):
        """
        Tortoise GPT training class
        """
        super().__init__(config, ap=None, tokenizer=None)
        self.config = config
        # init XTTS model
        self.xtts = Xtts(self.config)
        # create the tokenizer with the target vocabulary
        self.xtts.tokenizer = VoiceBpeTokenizer(self.args.tokenizer_file)
        # init gpt encoder and hifigan decoder
        self.xtts.init_models()

        if self.args.xtts_checkpoint:
            self.load_checkpoint(self.config, self.args.xtts_checkpoint, eval=False, strict=False)

        # set mel stats
        if self.args.mel_norm_file:
            self.xtts.mel_stats = load_fsspec(self.args.mel_norm_file)

        # load GPT if available
        if self.args.gpt_checkpoint:
            gpt_checkpoint = torch.load(self.args.gpt_checkpoint, map_location=torch.device("cpu"))
            # deal with coqui Trainer exported model
            if "model" in gpt_checkpoint.keys() and "config" in gpt_checkpoint.keys():
                print("Coqui Trainer checkpoint detected! Converting it!")
                gpt_checkpoint = gpt_checkpoint["model"]
                states_keys = list(gpt_checkpoint.keys())
                for key in states_keys:
                    if "gpt." in key:
                        new_key = key.replace("gpt.", "")
                        gpt_checkpoint[new_key] = gpt_checkpoint[key]
                        del gpt_checkpoint[key]
                    else:
                        del gpt_checkpoint[key]

            # edit checkpoint if the number of tokens is changed to ensures the better transfer learning possible
            if (
                "text_embedding.weight" in gpt_checkpoint
                and gpt_checkpoint["text_embedding.weight"].shape != self.xtts.gpt.text_embedding.weight.shape
            ):
                num_new_tokens = (
                    self.xtts.gpt.text_embedding.weight.shape[0] - gpt_checkpoint["text_embedding.weight"].shape[0]
                )
                print(f" > Loading checkpoint with {num_new_tokens} additional tokens.")

                # add new tokens to a linear layer (text_head)
                emb_g = gpt_checkpoint["text_embedding.weight"]
                new_row = torch.randn(num_new_tokens, emb_g.shape[1])
                start_token_row = emb_g[-1, :]
                emb_g = torch.cat([emb_g, new_row], axis=0)
                emb_g[-1, :] = start_token_row
                gpt_checkpoint["text_embedding.weight"] = emb_g

                # add new weights to the linear layer (text_head)
                text_head_weight = gpt_checkpoint["text_head.weight"]
                start_token_row = text_head_weight[-1, :]
                new_entry = torch.randn(num_new_tokens, self.xtts.gpt.text_head.weight.shape[1])
                text_head_weight = torch.cat([text_head_weight, new_entry], axis=0)
                text_head_weight[-1, :] = start_token_row
                gpt_checkpoint["text_head.weight"] = text_head_weight

                # add new biases to the linear layer (text_head)
                text_head_bias = gpt_checkpoint["text_head.bias"]
                start_token_row = text_head_bias[-1]
                new_bias_entry = torch.zeros(num_new_tokens)
                text_head_bias = torch.cat([text_head_bias, new_bias_entry], axis=0)
                text_head_bias[-1] = start_token_row
                gpt_checkpoint["text_head.bias"] = text_head_bias

            self.xtts.gpt.load_state_dict(gpt_checkpoint, strict=True)
            print(">> GPT weights restored from:", self.args.gpt_checkpoint)

        # Mel spectrogram extractor for conditioning
        if self.args.gpt_use_perceiver_resampler:
            self.torch_mel_spectrogram_style_encoder = TorchMelSpectrogram(
                filter_length=2048,
                hop_length=256,
                win_length=1024,
                normalize=False,
                sampling_rate=config.audio.sample_rate,
                mel_fmin=0,
                mel_fmax=8000,
                n_mel_channels=80,
                mel_norm_file=self.args.mel_norm_file,
            )
        else:
            self.torch_mel_spectrogram_style_encoder = TorchMelSpectrogram(
                filter_length=4096,
                hop_length=1024,
                win_length=4096,
                normalize=False,
                sampling_rate=config.audio.sample_rate,
                mel_fmin=0,
                mel_fmax=8000,
                n_mel_channels=80,
                mel_norm_file=self.args.mel_norm_file,
            )

        # Load DVAE
        self.dvae = DiscreteVAE(
            channels=80,
            normalization=None,
            positional_dims=1,
            num_tokens=self.args.gpt_num_audio_tokens - 2,
            codebook_dim=512,
            hidden_dim=512,
            num_resnet_blocks=3,
            kernel_size=3,
            num_layers=2,
            use_transposed_convs=False,
        )

        self.dvae.eval()
        if self.args.dvae_checkpoint:
            dvae_checkpoint = torch.load(self.args.dvae_checkpoint, map_location=torch.device("cpu"))
            self.dvae.load_state_dict(dvae_checkpoint, strict=False)
            print(">> DVAE weights restored from:", self.args.dvae_checkpoint)
        else:
            raise RuntimeError(
                "You need to specify config.model_args.dvae_checkpoint path to be able to train the GPT decoder!!"
            )

        # Mel spectrogram extractor for DVAE
        self.torch_mel_spectrogram_dvae = TorchMelSpectrogram(
            mel_norm_file=self.args.mel_norm_file, sampling_rate=config.audio.dvae_sample_rate
        )

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, text_inputs, text_lengths, audio_codes, wav_lengths, cond_mels, cond_idxs, cond_lens):
        """
        Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
        (actuated by `text_first`).

        text_inputs: long tensor, (b,t)
        text_lengths: long tensor, (b,)
        mel_inputs:  long tensor, (b,m)
        wav_lengths: long tensor, (b,)
        cond_mels: MEL float tensor, (b, num_samples, 80,t_m)
        cond_idxs: cond start and end indexs, (b, 2)
        cond_lens: long tensor, (b,)
        """
        losses = self.xtts.gpt(
            text_inputs,
            text_lengths,
            audio_codes,
            wav_lengths,
            cond_mels=cond_mels,
            cond_idxs=cond_idxs,
            cond_lens=cond_lens,
        )
        return losses

    @torch.no_grad()
    def test_run(self, assets) -> Tuple[Dict, Dict]:  # pylint: disable=W0613
        if self.config.test_sentences:
            # init gpt for inference mode
            self.xtts.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=False)
            self.xtts.gpt.eval()
            test_audios = {}
            print(" | > Synthesizing test sentences.")
            for idx, s_info in enumerate(self.config.test_sentences):
                wav = self.xtts.synthesize(
                    s_info["text"],
                    self.config,
                    s_info["speaker_wav"],
                    s_info["language"],
                    gpt_cond_len=3,
                )["wav"]
                test_audios["{}-audio".format(idx)] = wav

            # delete inference layers
            del self.xtts.gpt.gpt_inference
            del self.xtts.gpt.gpt.wte
        return {"audios": test_audios}

    def test_log(
        self, outputs: dict, logger: "Logger", assets: dict, steps: int  # pylint: disable=unused-argument
    ) -> None:
        logger.test_audios(steps, outputs["audios"], self.args.output_sample_rate)

    def format_batch(self, batch: Dict) -> Dict:
        return batch

    @torch.no_grad()  # torch no grad to avoid gradients from the pre-processing and DVAE codes extraction
    def format_batch_on_device(self, batch):
        """Compute spectrograms on the device."""
        batch["text_lengths"] = batch["text_lengths"]
        batch["wav_lengths"] = batch["wav_lengths"]
        batch["text_inputs"] = batch["padded_text"]
        batch["cond_idxs"] = batch["cond_idxs"]
        # compute conditioning mel specs
        # transform waves from torch.Size([B, num_cond_samples, 1, T] to torch.Size([B * num_cond_samples, 1, T] because if is faster than iterate the tensor
        B, num_cond_samples, C, T = batch["conditioning"].size()
        conditioning_reshaped = batch["conditioning"].view(B * num_cond_samples, C, T)
        paired_conditioning_mel = self.torch_mel_spectrogram_style_encoder(conditioning_reshaped)
        # transform torch.Size([B * num_cond_samples, n_mel, T_mel]) in torch.Size([B, num_cond_samples, n_mel, T_mel])
        n_mel = self.torch_mel_spectrogram_style_encoder.n_mel_channels  # paired_conditioning_mel.size(1)
        T_mel = paired_conditioning_mel.size(2)
        paired_conditioning_mel = paired_conditioning_mel.view(B, num_cond_samples, n_mel, T_mel)
        # get the conditioning embeddings
        batch["cond_mels"] = paired_conditioning_mel
        # compute codes using DVAE
        if self.config.audio.sample_rate != self.config.audio.dvae_sample_rate:
            dvae_wav = torchaudio.functional.resample(
                batch["wav"],
                orig_freq=self.config.audio.sample_rate,
                new_freq=self.config.audio.dvae_sample_rate,
                lowpass_filter_width=64,
                rolloff=0.9475937167399596,
                resampling_method="kaiser_window",
                beta=14.769656459379492,
            )
        else:
            dvae_wav = batch["wav"]
        dvae_mel_spec = self.torch_mel_spectrogram_dvae(dvae_wav)
        codes = self.dvae.get_codebook_indices(dvae_mel_spec)

        batch["audio_codes"] = codes
        # delete useless batch tensors
        del batch["padded_text"]
        del batch["wav"]
        del batch["conditioning"]
        return batch

    def train_step(self, batch, criterion):
        loss_dict = {}
        cond_mels = batch["cond_mels"]
        text_inputs = batch["text_inputs"]
        text_lengths = batch["text_lengths"]
        audio_codes = batch["audio_codes"]
        wav_lengths = batch["wav_lengths"]
        cond_idxs = batch["cond_idxs"]
        cond_lens = batch["cond_lens"]

        loss_text, loss_mel, _ = self.forward(
            text_inputs, text_lengths, audio_codes, wav_lengths, cond_mels, cond_idxs, cond_lens
        )
        loss_dict["loss_text_ce"] = loss_text * self.args.gpt_loss_text_ce_weight
        loss_dict["loss_mel_ce"] = loss_mel * self.args.gpt_loss_mel_ce_weight
        loss_dict["loss"] = loss_dict["loss_text_ce"] + loss_dict["loss_mel_ce"]
        return {"model_outputs": None}, loss_dict

    def eval_step(self, batch, criterion):
        # ignore masking for more consistent evaluation
        batch["cond_idxs"] = None
        return self.train_step(batch, criterion)

    def on_train_epoch_start(self, trainer):
        trainer.model.eval() # the whole model to eval
        # put gpt model in training mode
        trainer.model.xtts.gpt.train()

    def on_init_end(self, trainer):  # pylint: disable=W0613
        # ignore similarities.pth on clearml save/upload
        if self.config.dashboard_logger.lower() == "clearml":
            from clearml.binding.frameworks import WeightsFileHandler

            WeightsFileHandler.add_pre_callback(callback_clearml_load_save)

    @torch.no_grad()
    def inference(
        self,
        x,
        aux_input=None,
    ):  # pylint: disable=dangerous-default-value
        return None

    @staticmethod
    def get_criterion():
        return None

    def get_sampler(self, dataset: TTSDataset, num_gpus=1):
        # sampler for DDP
        batch_sampler = DistributedSampler(dataset) if num_gpus > 1 else None
        return batch_sampler

    def get_data_loader(
        self,
        config: Coqpit,
        assets: Dict,
        is_eval: bool,
        samples: Union[List[Dict], List[List]],
        verbose: bool,
        num_gpus: int,
        rank: int = None,
    ) -> "DataLoader":  # pylint: disable=W0613
        if is_eval and not config.run_eval:
            loader = None
        else:
            # init dataloader
            dataset = XTTSDataset(self.config, samples, self.xtts.tokenizer, config.audio.sample_rate, is_eval)

            # wait all the DDP process to be ready
            if num_gpus > 1:
                torch.distributed.barrier()

            # sort input sequences from short to long
            # dataset.preprocess_samples()

            # get samplers
            sampler = self.get_sampler(dataset, num_gpus)

            # ignore sampler when is eval because if we changed the sampler parameter we will not be able to compare previous runs
            if sampler is None or is_eval:
                loader = DataLoader(
                    dataset,
                    batch_size=config.eval_batch_size if is_eval else config.batch_size,
                    shuffle=False,
                    drop_last=False,
                    collate_fn=dataset.collate_fn,
                    num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
                    pin_memory=False,
                )
            else:
                loader = DataLoader(
                    dataset,
                    batch_sampler=sampler,
                    collate_fn=dataset.collate_fn,
                    num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
                    pin_memory=False,
                )
        return loader

    def get_optimizer(self) -> List:
        """Initiate and return the optimizer based on the config parameters."""
        # ToDo: deal with multi GPU training
        if self.config.optimizer_wd_only_on_weights:
            # parameters to only GPT model
            net = self.xtts.gpt

            # normalizations
            norm_modules = (
                nn.BatchNorm2d,
                nn.InstanceNorm2d,
                nn.BatchNorm1d,
                nn.InstanceNorm1d,
                nn.BatchNorm3d,
                nn.InstanceNorm3d,
                nn.GroupNorm,
                nn.LayerNorm,
            )
            # nn.Embedding
            emb_modules = (nn.Embedding, nn.EmbeddingBag)

            param_names_notweights = set()
            all_param_names = set()
            param_map = {}
            for mn, m in net.named_modules():
                for k, v in m.named_parameters():
                    v.is_bias = k.endswith(".bias")
                    v.is_weight = k.endswith(".weight")
                    v.is_norm = isinstance(m, norm_modules)
                    v.is_emb = isinstance(m, emb_modules)

                    fpn = "%s.%s" % (mn, k) if mn else k  # full param name
                    all_param_names.add(fpn)
                    param_map[fpn] = v
                    if v.is_bias or v.is_norm or v.is_emb:
                        param_names_notweights.add(fpn)

            params_names_notweights = sorted(list(param_names_notweights))
            params_notweights = [param_map[k] for k in params_names_notweights]
            params_names_weights = sorted(list(all_param_names ^ param_names_notweights))
            params_weights = [param_map[k] for k in params_names_weights]

            groups = [
                {"params": params_weights, "weight_decay": self.config.optimizer_params["weight_decay"]},
                {"params": params_notweights, "weight_decay": 0},
            ]
            # torch.optim.AdamW
            opt = get_optimizer(
                self.config.optimizer,
                self.config.optimizer_params,
                self.config.lr,
                parameters=groups,
            )
            opt._group_names = [params_names_weights, params_names_notweights]
            return opt

        return get_optimizer(
            self.config.optimizer,
            self.config.optimizer_params,
            self.config.lr,
            # optimize only for the GPT model
            parameters=self.xtts.gpt.parameters(),
        )

    def get_scheduler(self, optimizer) -> List:
        """Set the scheduler for the optimizer.

        Args:
            optimizer: `torch.optim.Optimizer`.
        """
        return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, optimizer)

    def load_checkpoint(
        self,
        config,
        checkpoint_path,
        eval=False,
        strict=True,
        cache_storage="/tmp/tts_cache",
        target_protocol="s3",
        target_options={"anon": True},
    ):  # pylint: disable=unused-argument, disable=W0201, disable=W0102, redefined-builtin
        """Load the model checkpoint and setup for training or inference"""

        state = self.xtts.get_compatible_checkpoint_state_dict(checkpoint_path)

        # load the model weights
        self.xtts.load_state_dict(state, strict=strict)

        if eval:
            self.xtts.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=False)
            self.eval()
            assert not self.training

    @staticmethod
    def init_from_config(config: "GPTTrainerConfig", samples: Union[List[List], List[Dict]] = None):
        """Initiate model from config

        Args:
            config (GPTTrainerConfig): Model config.
            samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
                Defaults to None.
        """
        return GPTTrainer(config)