File size: 4,628 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""Set of default text cleaners"""
# TODO: pick the cleaner for languages dynamically

import re

from anyascii import anyascii

from TTS.tts.utils.text.chinese_mandarin.numbers import replace_numbers_to_characters_in_text

from .english.abbreviations import abbreviations_en
from .english.number_norm import normalize_numbers as en_normalize_numbers
from .english.time_norm import expand_time_english
from .french.abbreviations import abbreviations_fr

# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")


def expand_abbreviations(text, lang="en"):
    if lang == "en":
        _abbreviations = abbreviations_en
    elif lang == "fr":
        _abbreviations = abbreviations_fr
    for regex, replacement in _abbreviations:
        text = re.sub(regex, replacement, text)
    return text


def lowercase(text):
    return text.lower()


def collapse_whitespace(text):
    return re.sub(_whitespace_re, " ", text).strip()


def convert_to_ascii(text):
    return anyascii(text)


def remove_aux_symbols(text):
    text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text)
    return text


def replace_symbols(text, lang="en"):
    """Replace symbols based on the lenguage tag.

    Args:
      text:
       Input text.
      lang:
        Lenguage identifier. ex: "en", "fr", "pt", "ca".

    Returns:
      The modified text
      example:
        input args:
            text: "si l'avi cau, diguem-ho"
            lang: "ca"
        Output:
            text: "si lavi cau, diguemho"
    """
    text = text.replace(";", ",")
    text = text.replace("-", " ") if lang != "ca" else text.replace("-", "")
    text = text.replace(":", ",")
    if lang == "en":
        text = text.replace("&", " and ")
    elif lang == "fr":
        text = text.replace("&", " et ")
    elif lang == "pt":
        text = text.replace("&", " e ")
    elif lang == "ca":
        text = text.replace("&", " i ")
        text = text.replace("'", "")
    return text


def basic_cleaners(text):
    """Basic pipeline that lowercases and collapses whitespace without transliteration."""
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def transliteration_cleaners(text):
    """Pipeline for non-English text that transliterates to ASCII."""
    # text = convert_to_ascii(text)
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def basic_german_cleaners(text):
    """Pipeline for German text"""
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


# TODO: elaborate it
def basic_turkish_cleaners(text):
    """Pipeline for Turkish text"""
    text = text.replace("I", "ı")
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def english_cleaners(text):
    """Pipeline for English text, including number and abbreviation expansion."""
    # text = convert_to_ascii(text)
    text = lowercase(text)
    text = expand_time_english(text)
    text = en_normalize_numbers(text)
    text = expand_abbreviations(text)
    text = replace_symbols(text)
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text


def phoneme_cleaners(text):
    """Pipeline for phonemes mode, including number and abbreviation expansion."""
    text = en_normalize_numbers(text)
    text = expand_abbreviations(text)
    text = replace_symbols(text)
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text


def french_cleaners(text):
    """Pipeline for French text. There is no need to expand numbers, phonemizer already does that"""
    text = expand_abbreviations(text, lang="fr")
    text = lowercase(text)
    text = replace_symbols(text, lang="fr")
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text


def portuguese_cleaners(text):
    """Basic pipeline for Portuguese text. There is no need to expand abbreviation and
    numbers, phonemizer already does that"""
    text = lowercase(text)
    text = replace_symbols(text, lang="pt")
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text


def chinese_mandarin_cleaners(text: str) -> str:
    """Basic pipeline for chinese"""
    text = replace_numbers_to_characters_in_text(text)
    return text


def multilingual_cleaners(text):
    """Pipeline for multilingual text"""
    text = lowercase(text)
    text = replace_symbols(text, lang=None)
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text


def no_cleaners(text):
    # remove newline characters
    text = text.replace("\n", "")
    return text