Spaces:
Running
Running
File size: 18,726 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import os
import random
from typing import Dict, List, Tuple, Union
import torch
import torch.distributed as dist
from coqpit import Coqpit
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from trainer.torch import DistributedSampler, DistributedSamplerWrapper
from TTS.model import BaseTrainerModel
from TTS.tts.datasets.dataset import TTSDataset
from TTS.tts.utils.data import get_length_balancer_weights
from TTS.tts.utils.languages import LanguageManager, get_language_balancer_weights
from TTS.tts.utils.speakers import SpeakerManager, get_speaker_balancer_weights
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
# pylint: skip-file
class BaseVC(BaseTrainerModel):
"""Base `vc` class. Every new `vc` model must inherit this.
It defines common `vc` specific functions on top of `Model` implementation.
"""
MODEL_TYPE = "vc"
def __init__(
self,
config: Coqpit,
ap: "AudioProcessor",
speaker_manager: SpeakerManager = None,
language_manager: LanguageManager = None,
):
super().__init__()
self.config = config
self.ap = ap
self.speaker_manager = speaker_manager
self.language_manager = language_manager
self._set_model_args(config)
def _set_model_args(self, config: Coqpit):
"""Setup model args based on the config type (`ModelConfig` or `ModelArgs`).
`ModelArgs` has all the fields reuqired to initialize the model architecture.
`ModelConfig` has all the fields required for training, inference and containes `ModelArgs`.
If the config is for training with a name like "*Config", then the model args are embeded in the
config.model_args
If the config is for the model with a name like "*Args", then we assign the directly.
"""
# don't use isintance not to import recursively
if "Config" in config.__class__.__name__:
self.config = config
self.args = config.model_args
elif "Args" in config.__class__.__name__:
self.args = config
else:
raise ValueError("config must be either a *Config or *Args")
def init_multispeaker(self, config: Coqpit, data: List = None):
"""Initialize a speaker embedding layer if needen and define expected embedding channel size for defining
`in_channels` size of the connected layers.
This implementation yields 3 possible outcomes:
1. If `config.use_speaker_embedding` and `config.use_d_vector_file are False, do nothing.
2. If `config.use_d_vector_file` is True, set expected embedding channel size to `config.d_vector_dim` or 512.
3. If `config.use_speaker_embedding`, initialize a speaker embedding layer with channel size of
`config.d_vector_dim` or 512.
You can override this function for new models.
Args:
config (Coqpit): Model configuration.
"""
# set number of speakers
if self.speaker_manager is not None:
self.num_speakers = self.speaker_manager.num_speakers
elif hasattr(config, "num_speakers"):
self.num_speakers = config.num_speakers
# set ultimate speaker embedding size
if config.use_speaker_embedding or config.use_d_vector_file:
self.embedded_speaker_dim = (
config.d_vector_dim if "d_vector_dim" in config and config.d_vector_dim is not None else 512
)
# init speaker embedding layer
if config.use_speaker_embedding and not config.use_d_vector_file:
print(" > Init speaker_embedding layer.")
self.speaker_embedding = nn.Embedding(self.num_speakers, self.embedded_speaker_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
def get_aux_input(self, **kwargs) -> Dict:
"""Prepare and return `aux_input` used by `forward()`"""
return {"speaker_id": None, "style_wav": None, "d_vector": None, "language_id": None}
def get_aux_input_from_test_sentences(self, sentence_info):
if hasattr(self.config, "model_args"):
config = self.config.model_args
else:
config = self.config
# extract speaker and language info
text, speaker_name, style_wav, language_name = None, None, None, None
if isinstance(sentence_info, list):
if len(sentence_info) == 1:
text = sentence_info[0]
elif len(sentence_info) == 2:
text, speaker_name = sentence_info
elif len(sentence_info) == 3:
text, speaker_name, style_wav = sentence_info
elif len(sentence_info) == 4:
text, speaker_name, style_wav, language_name = sentence_info
else:
text = sentence_info
# get speaker id/d_vector
speaker_id, d_vector, language_id = None, None, None
if self.speaker_manager is not None:
if config.use_d_vector_file:
if speaker_name is None:
d_vector = self.speaker_manager.get_random_embedding()
else:
d_vector = self.speaker_manager.get_d_vector_by_name(speaker_name)
elif config.use_speaker_embedding:
if speaker_name is None:
speaker_id = self.speaker_manager.get_random_id()
else:
speaker_id = self.speaker_manager.name_to_id[speaker_name]
# get language id
if self.language_manager is not None and config.use_language_embedding and language_name is not None:
language_id = self.language_manager.name_to_id[language_name]
return {
"text": text,
"speaker_id": speaker_id,
"style_wav": style_wav,
"d_vector": d_vector,
"language_id": language_id,
}
def format_batch(self, batch: Dict) -> Dict:
"""Generic batch formatting for `VCDataset`.
You must override this if you use a custom dataset.
Args:
batch (Dict): [description]
Returns:
Dict: [description]
"""
# setup input batch
text_input = batch["token_id"]
text_lengths = batch["token_id_lengths"]
speaker_names = batch["speaker_names"]
linear_input = batch["linear"]
mel_input = batch["mel"]
mel_lengths = batch["mel_lengths"]
stop_targets = batch["stop_targets"]
item_idx = batch["item_idxs"]
d_vectors = batch["d_vectors"]
speaker_ids = batch["speaker_ids"]
attn_mask = batch["attns"]
waveform = batch["waveform"]
pitch = batch["pitch"]
energy = batch["energy"]
language_ids = batch["language_ids"]
max_text_length = torch.max(text_lengths.float())
max_spec_length = torch.max(mel_lengths.float())
# compute durations from attention masks
durations = None
if attn_mask is not None:
durations = torch.zeros(attn_mask.shape[0], attn_mask.shape[2])
for idx, am in enumerate(attn_mask):
# compute raw durations
c_idxs = am[:, : text_lengths[idx], : mel_lengths[idx]].max(1)[1]
# c_idxs, counts = torch.unique_consecutive(c_idxs, return_counts=True)
c_idxs, counts = torch.unique(c_idxs, return_counts=True)
dur = torch.ones([text_lengths[idx]]).to(counts.dtype)
dur[c_idxs] = counts
# smooth the durations and set any 0 duration to 1
# by cutting off from the largest duration indeces.
extra_frames = dur.sum() - mel_lengths[idx]
largest_idxs = torch.argsort(-dur)[:extra_frames]
dur[largest_idxs] -= 1
assert (
dur.sum() == mel_lengths[idx]
), f" [!] total duration {dur.sum()} vs spectrogram length {mel_lengths[idx]}"
durations[idx, : text_lengths[idx]] = dur
# set stop targets wrt reduction factor
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // self.config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
stop_target_lengths = torch.divide(mel_lengths, self.config.r).ceil_()
return {
"text_input": text_input,
"text_lengths": text_lengths,
"speaker_names": speaker_names,
"mel_input": mel_input,
"mel_lengths": mel_lengths,
"linear_input": linear_input,
"stop_targets": stop_targets,
"stop_target_lengths": stop_target_lengths,
"attn_mask": attn_mask,
"durations": durations,
"speaker_ids": speaker_ids,
"d_vectors": d_vectors,
"max_text_length": float(max_text_length),
"max_spec_length": float(max_spec_length),
"item_idx": item_idx,
"waveform": waveform,
"pitch": pitch,
"energy": energy,
"language_ids": language_ids,
"audio_unique_names": batch["audio_unique_names"],
}
def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1):
weights = None
data_items = dataset.samples
if getattr(config, "use_language_weighted_sampler", False):
alpha = getattr(config, "language_weighted_sampler_alpha", 1.0)
print(" > Using Language weighted sampler with alpha:", alpha)
weights = get_language_balancer_weights(data_items) * alpha
if getattr(config, "use_speaker_weighted_sampler", False):
alpha = getattr(config, "speaker_weighted_sampler_alpha", 1.0)
print(" > Using Speaker weighted sampler with alpha:", alpha)
if weights is not None:
weights += get_speaker_balancer_weights(data_items) * alpha
else:
weights = get_speaker_balancer_weights(data_items) * alpha
if getattr(config, "use_length_weighted_sampler", False):
alpha = getattr(config, "length_weighted_sampler_alpha", 1.0)
print(" > Using Length weighted sampler with alpha:", alpha)
if weights is not None:
weights += get_length_balancer_weights(data_items) * alpha
else:
weights = get_length_balancer_weights(data_items) * alpha
if weights is not None:
sampler = WeightedRandomSampler(weights, len(weights))
else:
sampler = None
# sampler for DDP
if sampler is None:
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
else: # If a sampler is already defined use this sampler and DDP sampler together
sampler = DistributedSamplerWrapper(sampler) if num_gpus > 1 else sampler
return sampler
def get_data_loader(
self,
config: Coqpit,
assets: Dict,
is_eval: bool,
samples: Union[List[Dict], List[List]],
verbose: bool,
num_gpus: int,
rank: int = None,
) -> "DataLoader":
if is_eval and not config.run_eval:
loader = None
else:
# setup multi-speaker attributes
if self.speaker_manager is not None:
if hasattr(config, "model_args"):
speaker_id_mapping = (
self.speaker_manager.name_to_id if config.model_args.use_speaker_embedding else None
)
d_vector_mapping = self.speaker_manager.embeddings if config.model_args.use_d_vector_file else None
config.use_d_vector_file = config.model_args.use_d_vector_file
else:
speaker_id_mapping = self.speaker_manager.name_to_id if config.use_speaker_embedding else None
d_vector_mapping = self.speaker_manager.embeddings if config.use_d_vector_file else None
else:
speaker_id_mapping = None
d_vector_mapping = None
# setup multi-lingual attributes
if self.language_manager is not None:
language_id_mapping = self.language_manager.name_to_id if self.args.use_language_embedding else None
else:
language_id_mapping = None
# init dataloader
dataset = TTSDataset(
outputs_per_step=config.r if "r" in config else 1,
compute_linear_spec=config.model.lower() == "tacotron" or config.compute_linear_spec,
compute_f0=config.get("compute_f0", False),
f0_cache_path=config.get("f0_cache_path", None),
compute_energy=config.get("compute_energy", False),
energy_cache_path=config.get("energy_cache_path", None),
samples=samples,
ap=self.ap,
return_wav=config.return_wav if "return_wav" in config else False,
batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size,
min_text_len=config.min_text_len,
max_text_len=config.max_text_len,
min_audio_len=config.min_audio_len,
max_audio_len=config.max_audio_len,
phoneme_cache_path=config.phoneme_cache_path,
precompute_num_workers=config.precompute_num_workers,
use_noise_augment=False if is_eval else config.use_noise_augment,
verbose=verbose,
speaker_id_mapping=speaker_id_mapping,
d_vector_mapping=d_vector_mapping if config.use_d_vector_file else None,
tokenizer=None,
start_by_longest=config.start_by_longest,
language_id_mapping=language_id_mapping,
)
# wait all the DDP process to be ready
if num_gpus > 1:
dist.barrier()
# sort input sequences from short to long
dataset.preprocess_samples()
# get samplers
sampler = self.get_sampler(config, dataset, num_gpus)
loader = DataLoader(
dataset,
batch_size=config.eval_batch_size if is_eval else config.batch_size,
shuffle=config.shuffle if sampler is None else False, # if there is no other sampler
collate_fn=dataset.collate_fn,
drop_last=config.drop_last, # setting this False might cause issues in AMP training.
sampler=sampler,
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
pin_memory=False,
)
return loader
def _get_test_aux_input(
self,
) -> Dict:
d_vector = None
if self.config.use_d_vector_file:
d_vector = [self.speaker_manager.embeddings[name]["embedding"] for name in self.speaker_manager.embeddings]
d_vector = (random.sample(sorted(d_vector), 1),)
aux_inputs = {
"speaker_id": None
if not self.config.use_speaker_embedding
else random.sample(sorted(self.speaker_manager.name_to_id.values()), 1),
"d_vector": d_vector,
"style_wav": None, # TODO: handle GST style input
}
return aux_inputs
def test_run(self, assets: Dict) -> Tuple[Dict, Dict]:
"""Generic test run for `vc` models used by `Trainer`.
You can override this for a different behaviour.
Args:
assets (dict): A dict of training assets. For `vc` models, it must include `{'audio_processor': ap}`.
Returns:
Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
"""
print(" | > Synthesizing test sentences.")
test_audios = {}
test_figures = {}
test_sentences = self.config.test_sentences
aux_inputs = self._get_test_aux_input()
for idx, sen in enumerate(test_sentences):
if isinstance(sen, list):
aux_inputs = self.get_aux_input_from_test_sentences(sen)
sen = aux_inputs["text"]
outputs_dict = synthesis(
self,
sen,
self.config,
"cuda" in str(next(self.parameters()).device),
speaker_id=aux_inputs["speaker_id"],
d_vector=aux_inputs["d_vector"],
style_wav=aux_inputs["style_wav"],
use_griffin_lim=True,
do_trim_silence=False,
)
test_audios["{}-audio".format(idx)] = outputs_dict["wav"]
test_figures["{}-prediction".format(idx)] = plot_spectrogram(
outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False
)
test_figures["{}-alignment".format(idx)] = plot_alignment(
outputs_dict["outputs"]["alignments"], output_fig=False
)
return test_figures, test_audios
def on_init_start(self, trainer):
"""Save the speaker.pth and language_ids.json at the beginning of the training. Also update both paths."""
if self.speaker_manager is not None:
output_path = os.path.join(trainer.output_path, "speakers.pth")
self.speaker_manager.save_ids_to_file(output_path)
trainer.config.speakers_file = output_path
# some models don't have `model_args` set
if hasattr(trainer.config, "model_args"):
trainer.config.model_args.speakers_file = output_path
trainer.config.save_json(os.path.join(trainer.output_path, "config.json"))
print(f" > `speakers.pth` is saved to {output_path}.")
print(" > `speakers_file` is updated in the config.json.")
if self.language_manager is not None:
output_path = os.path.join(trainer.output_path, "language_ids.json")
self.language_manager.save_ids_to_file(output_path)
trainer.config.language_ids_file = output_path
if hasattr(trainer.config, "model_args"):
trainer.config.model_args.language_ids_file = output_path
trainer.config.save_json(os.path.join(trainer.output_path, "config.json"))
print(f" > `language_ids.json` is saved to {output_path}.")
print(" > `language_ids_file` is updated in the config.json.")
|