Spaces:
Running
Running
File size: 19,052 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
from dataclasses import dataclass, field
from typing import Dict, List, Union
import torch
from coqpit import Coqpit
from torch import nn
from TTS.tts.layers.align_tts.mdn import MDNBlock
from TTS.tts.layers.feed_forward.decoder import Decoder
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
from TTS.tts.layers.feed_forward.encoder import Encoder
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.io import load_fsspec
@dataclass
class AlignTTSArgs(Coqpit):
"""
Args:
num_chars (int):
number of unique input to characters
out_channels (int):
number of output tensor channels. It is equal to the expected spectrogram size.
hidden_channels (int):
number of channels in all the model layers.
hidden_channels_ffn (int):
number of channels in transformer's conv layers.
hidden_channels_dp (int):
number of channels in duration predictor network.
num_heads (int):
number of attention heads in transformer networks.
num_transformer_layers (int):
number of layers in encoder and decoder transformer blocks.
dropout_p (int):
dropout rate in transformer layers.
length_scale (int, optional):
coefficient to set the speech speed. <1 slower, >1 faster. Defaults to 1.
num_speakers (int, optional):
number of speakers for multi-speaker training. Defaults to 0.
external_c (bool, optional):
enable external speaker embeddings. Defaults to False.
c_in_channels (int, optional):
number of channels in speaker embedding vectors. Defaults to 0.
"""
num_chars: int = None
out_channels: int = 80
hidden_channels: int = 256
hidden_channels_dp: int = 256
encoder_type: str = "fftransformer"
encoder_params: dict = field(
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}
)
decoder_type: str = "fftransformer"
decoder_params: dict = field(
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1}
)
length_scale: float = 1.0
num_speakers: int = 0
use_speaker_embedding: bool = False
use_d_vector_file: bool = False
d_vector_dim: int = 0
class AlignTTS(BaseTTS):
"""AlignTTS with modified duration predictor.
https://arxiv.org/pdf/2003.01950.pdf
Encoder -> DurationPredictor -> Decoder
Check :class:`AlignTTSArgs` for the class arguments.
Paper Abstract:
Targeting at both high efficiency and performance, we propose AlignTTS to predict the
mel-spectrum in parallel. AlignTTS is based on a Feed-Forward Transformer which generates mel-spectrum from a
sequence of characters, and the duration of each character is determined by a duration predictor.Instead of
adopting the attention mechanism in Transformer TTS to align text to mel-spectrum, the alignment loss is presented
to consider all possible alignments in training by use of dynamic programming. Experiments on the LJSpeech dataset s
how that our model achieves not only state-of-the-art performance which outperforms Transformer TTS by 0.03 in mean
option score (MOS), but also a high efficiency which is more than 50 times faster than real-time.
Note:
Original model uses a separate character embedding layer for duration predictor. However, it causes the
duration predictor to overfit and prevents learning higher level interactions among characters. Therefore,
we predict durations based on encoder outputs which has higher level information about input characters. This
enables training without phases as in the original paper.
Original model uses Transormers in encoder and decoder layers. However, here you can set the architecture
differently based on your requirements using ```encoder_type``` and ```decoder_type``` parameters.
Examples:
>>> from TTS.tts.configs.align_tts_config import AlignTTSConfig
>>> config = AlignTTSConfig()
>>> model = AlignTTS(config)
"""
# pylint: disable=dangerous-default-value
def __init__(
self,
config: "AlignTTSConfig",
ap: "AudioProcessor" = None,
tokenizer: "TTSTokenizer" = None,
speaker_manager: SpeakerManager = None,
):
super().__init__(config, ap, tokenizer, speaker_manager)
self.speaker_manager = speaker_manager
self.phase = -1
self.length_scale = (
float(config.model_args.length_scale)
if isinstance(config.model_args.length_scale, int)
else config.model_args.length_scale
)
self.emb = nn.Embedding(self.config.model_args.num_chars, self.config.model_args.hidden_channels)
self.embedded_speaker_dim = 0
self.init_multispeaker(config)
self.pos_encoder = PositionalEncoding(config.model_args.hidden_channels)
self.encoder = Encoder(
config.model_args.hidden_channels,
config.model_args.hidden_channels,
config.model_args.encoder_type,
config.model_args.encoder_params,
self.embedded_speaker_dim,
)
self.decoder = Decoder(
config.model_args.out_channels,
config.model_args.hidden_channels,
config.model_args.decoder_type,
config.model_args.decoder_params,
)
self.duration_predictor = DurationPredictor(config.model_args.hidden_channels_dp)
self.mod_layer = nn.Conv1d(config.model_args.hidden_channels, config.model_args.hidden_channels, 1)
self.mdn_block = MDNBlock(config.model_args.hidden_channels, 2 * config.model_args.out_channels)
if self.embedded_speaker_dim > 0 and self.embedded_speaker_dim != config.model_args.hidden_channels:
self.proj_g = nn.Conv1d(self.embedded_speaker_dim, config.model_args.hidden_channels, 1)
@staticmethod
def compute_log_probs(mu, log_sigma, y):
# pylint: disable=protected-access, c-extension-no-member
y = y.transpose(1, 2).unsqueeze(1) # [B, 1, T1, D]
mu = mu.transpose(1, 2).unsqueeze(2) # [B, T2, 1, D]
log_sigma = log_sigma.transpose(1, 2).unsqueeze(2) # [B, T2, 1, D]
expanded_y, expanded_mu = torch.broadcast_tensors(y, mu)
exponential = -0.5 * torch.mean(
torch._C._nn.mse_loss(expanded_y, expanded_mu, 0) / torch.pow(log_sigma.exp(), 2), dim=-1
) # B, L, T
logp = exponential - 0.5 * log_sigma.mean(dim=-1)
return logp
def compute_align_path(self, mu, log_sigma, y, x_mask, y_mask):
# find the max alignment path
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
log_p = self.compute_log_probs(mu, log_sigma, y)
# [B, T_en, T_dec]
attn = maximum_path(log_p, attn_mask.squeeze(1)).unsqueeze(1)
dr_mas = torch.sum(attn, -1)
return dr_mas.squeeze(1), log_p
@staticmethod
def generate_attn(dr, x_mask, y_mask=None):
# compute decode mask from the durations
if y_mask is None:
y_lengths = dr.sum(1).long()
y_lengths[y_lengths < 1] = 1
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype)
return attn
def expand_encoder_outputs(self, en, dr, x_mask, y_mask):
"""Generate attention alignment map from durations and
expand encoder outputs
Examples::
- encoder output: [a,b,c,d]
- durations: [1, 3, 2, 1]
- expanded: [a, b, b, b, c, c, d]
- attention map: [[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0]]
"""
attn = self.generate_attn(dr, x_mask, y_mask)
o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2), en.transpose(1, 2)).transpose(1, 2)
return o_en_ex, attn
def format_durations(self, o_dr_log, x_mask):
o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale
o_dr[o_dr < 1] = 1.0
o_dr = torch.round(o_dr)
return o_dr
@staticmethod
def _concat_speaker_embedding(o_en, g):
g_exp = g.expand(-1, -1, o_en.size(-1)) # [B, C, T_en]
o_en = torch.cat([o_en, g_exp], 1)
return o_en
def _sum_speaker_embedding(self, x, g):
# project g to decoder dim.
if hasattr(self, "proj_g"):
g = self.proj_g(g)
return x + g
def _forward_encoder(self, x, x_lengths, g=None):
if hasattr(self, "emb_g"):
g = nn.functional.normalize(self.speaker_embedding(g)) # [B, C, 1]
if g is not None:
g = g.unsqueeze(-1)
# [B, T, C]
x_emb = self.emb(x)
# [B, C, T]
x_emb = torch.transpose(x_emb, 1, -1)
# compute sequence masks
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype)
# encoder pass
o_en = self.encoder(x_emb, x_mask)
# speaker conditioning for duration predictor
if g is not None:
o_en_dp = self._concat_speaker_embedding(o_en, g)
else:
o_en_dp = o_en
return o_en, o_en_dp, x_mask, g
def _forward_decoder(self, o_en, o_en_dp, dr, x_mask, y_lengths, g):
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype)
# expand o_en with durations
o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask)
# positional encoding
if hasattr(self, "pos_encoder"):
o_en_ex = self.pos_encoder(o_en_ex, y_mask)
# speaker embedding
if g is not None:
o_en_ex = self._sum_speaker_embedding(o_en_ex, g)
# decoder pass
o_de = self.decoder(o_en_ex, y_mask, g=g)
return o_de, attn.transpose(1, 2)
def _forward_mdn(self, o_en, y, y_lengths, x_mask):
# MAS potentials and alignment
mu, log_sigma = self.mdn_block(o_en)
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype)
dr_mas, logp = self.compute_align_path(mu, log_sigma, y, x_mask, y_mask)
return dr_mas, mu, log_sigma, logp
def forward(
self, x, x_lengths, y, y_lengths, aux_input={"d_vectors": None}, phase=None
): # pylint: disable=unused-argument
"""
Shapes:
- x: :math:`[B, T_max]`
- x_lengths: :math:`[B]`
- y_lengths: :math:`[B]`
- dr: :math:`[B, T_max]`
- g: :math:`[B, C]`
"""
y = y.transpose(1, 2)
g = aux_input["d_vectors"] if "d_vectors" in aux_input else None
o_de, o_dr_log, dr_mas_log, attn, mu, log_sigma, logp = None, None, None, None, None, None, None
if phase == 0:
# train encoder and MDN
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype)
attn = self.generate_attn(dr_mas, x_mask, y_mask)
elif phase == 1:
# train decoder
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
dr_mas, _, _, _ = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en.detach(), o_en_dp.detach(), dr_mas.detach(), x_mask, y_lengths, g=g)
elif phase == 2:
# train the whole except duration predictor
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g)
elif phase == 3:
# train duration predictor
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
o_dr_log = self.duration_predictor(x, x_mask)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g)
o_dr_log = o_dr_log.squeeze(1)
else:
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g)
o_dr_log = o_dr_log.squeeze(1)
dr_mas_log = torch.log(dr_mas + 1).squeeze(1)
outputs = {
"model_outputs": o_de.transpose(1, 2),
"alignments": attn,
"durations_log": o_dr_log,
"durations_mas_log": dr_mas_log,
"mu": mu,
"log_sigma": log_sigma,
"logp": logp,
}
return outputs
@torch.no_grad()
def inference(self, x, aux_input={"d_vectors": None}): # pylint: disable=unused-argument
"""
Shapes:
- x: :math:`[B, T_max]`
- x_lengths: :math:`[B]`
- g: :math:`[B, C]`
"""
g = aux_input["d_vectors"] if "d_vectors" in aux_input else None
x_lengths = torch.tensor(x.shape[1:2]).to(x.device)
# pad input to prevent dropping the last word
# x = torch.nn.functional.pad(x, pad=(0, 5), mode='constant', value=0)
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
# o_dr_log = self.duration_predictor(x, x_mask)
o_dr_log = self.duration_predictor(o_en_dp, x_mask)
# duration predictor pass
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1)
y_lengths = o_dr.sum(1)
o_de, attn = self._forward_decoder(o_en, o_en_dp, o_dr, x_mask, y_lengths, g=g)
outputs = {"model_outputs": o_de.transpose(1, 2), "alignments": attn}
return outputs
def train_step(self, batch: dict, criterion: nn.Module):
text_input = batch["text_input"]
text_lengths = batch["text_lengths"]
mel_input = batch["mel_input"]
mel_lengths = batch["mel_lengths"]
d_vectors = batch["d_vectors"]
speaker_ids = batch["speaker_ids"]
aux_input = {"d_vectors": d_vectors, "speaker_ids": speaker_ids}
outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input, self.phase)
loss_dict = criterion(
outputs["logp"],
outputs["model_outputs"],
mel_input,
mel_lengths,
outputs["durations_log"],
outputs["durations_mas_log"],
text_lengths,
phase=self.phase,
)
return outputs, loss_dict
def _create_logs(self, batch, outputs, ap): # pylint: disable=no-self-use
model_outputs = outputs["model_outputs"]
alignments = outputs["alignments"]
mel_input = batch["mel_input"]
pred_spec = model_outputs[0].data.cpu().numpy()
gt_spec = mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
# Sample audio
train_audio = ap.inv_melspectrogram(pred_spec.T)
return figures, {"audio": train_audio}
def train_log(
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
) -> None: # pylint: disable=no-self-use
figures, audios = self._create_logs(batch, outputs, self.ap)
logger.train_figures(steps, figures)
logger.train_audios(steps, audios, self.ap.sample_rate)
def eval_step(self, batch: dict, criterion: nn.Module):
return self.train_step(batch, criterion)
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
figures, audios = self._create_logs(batch, outputs, self.ap)
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, self.ap.sample_rate)
def load_checkpoint(
self, config, checkpoint_path, eval=False, cache=False
): # pylint: disable=unused-argument, redefined-builtin
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
self.load_state_dict(state["model"])
if eval:
self.eval()
assert not self.training
def get_criterion(self):
from TTS.tts.layers.losses import AlignTTSLoss # pylint: disable=import-outside-toplevel
return AlignTTSLoss(self.config)
@staticmethod
def _set_phase(config, global_step):
"""Decide AlignTTS training phase"""
if isinstance(config.phase_start_steps, list):
vals = [i < global_step for i in config.phase_start_steps]
if not True in vals:
phase = 0
else:
phase = (
len(config.phase_start_steps)
- [i < global_step for i in config.phase_start_steps][::-1].index(True)
- 1
)
else:
phase = None
return phase
def on_epoch_start(self, trainer):
"""Set AlignTTS training phase on epoch start."""
self.phase = self._set_phase(trainer.config, trainer.total_steps_done)
@staticmethod
def init_from_config(config: "AlignTTSConfig", samples: Union[List[List], List[Dict]] = None):
"""Initiate model from config
Args:
config (AlignTTSConfig): Model config.
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
Defaults to None.
"""
from TTS.utils.audio import AudioProcessor
ap = AudioProcessor.init_from_config(config)
tokenizer, new_config = TTSTokenizer.init_from_config(config)
speaker_manager = SpeakerManager.init_from_config(config, samples)
return AlignTTS(new_config, ap, tokenizer, speaker_manager)
|